
Design Concepts with System
Architect: Level 2

John Leidel
Chief Scientist, Tactical Computing Laboratories

ver 2020.09.15

Tactical Computing Laboratories

Tutorial Series

• Level 0: Introduction to System Architect

• Level 1: System Architect Design Concepts and Developing a basic RISC
processor

• Level 2: Instruction-Level (StoneCutter) Implementation Concepts

• Level 3: Advanced Design Concepts

• Level 4: System Architect Plugins and Integrating External RTL

Tactical Computing Laboratories

Overview

• StoneCutter Overview

• StoneCutter Tool Infrastructure

• Intro to StoneCutter Syntax

• Implementing a Basic RISC Device

• References

Tactical Computing Laboratories

StoneCutter Overview
Instruction Definition Concepts

Tactical Computing Laboratories

What is StoneCutter?

• A concise language for specifying the implementation of a SINGLE
instruction
• StoneCutter implements instructions as “functions”
• Supports all the standard types of:

• Arithmetic
• Boolean logic
• Conditionals/Flow control

• Support for pathological, optimized circuits via “intrinsics”
• Similar in style to traditional compiler builtins/intrinsics

• Language is constructed to support very rapid design evaluation
• StoneCutter tools compile to Chisel HDL

Tactical Computing Laboratories

What is StoneCutter NOT?

• StoneCutter is not the latest C-to-gates language
• Does not compile directly to Verilog

• StoneCutter is not designed to implement the entire design
• The language constructs are only designed to handle individual instructions

• StoneCutter still relies upon the user to utilize reasonable design concepts
• StoneCutter has a number of safety passes in order to error/warn the user of

erroneous or potentially slow paths
• Is not guaranteed to produce optimized implementations from poor inputs

• StoneCutter does not have a notion of physical layout
• We’re compiling to Chisel HDL, not gates

• StoneCutter does not have explicit access to clocks
• Clocks are exposed in the Chisel, but not StoneCutter

Tactical Computing Laboratories

2/10/17 7

IR	Generated	and	
Cores

CGCLI
Command Line

Interface

User Interfaces

CoreGen
Infrastructure

CoreGen Plugin
CoreGen Plugin

CoreGen Plugin
CoreGen Plugin

CoreGen Plugin
CoreGen Plugin

StoneCutter
Compiler

SC Input
SC Input

SC Input
SC Input

SC Input
SC Input

CodeGen

LLVM Source
Compiler

Chisel
HDL

Backend Infrastructure

YAML
IR

Verilog C++ Cycle
Sim

System Architect Infrastructure

Tactical Computing Laboratories
This is where StoneCutter fits

StoneCutter Infrastructure

• Users craft StoneCutter implementation files that represent their
instructions
• Each instruction implementation is a “function” with inputs and outputs

• StoneCutter implementation files are compiled via the StoneCutter
compiler (sccomp)
• StoneCutter compiler is based upon LLVM
• Custom language frontend & custom code generator

• Compiler utilizes mixture of traditional LLVM optimization passes and
custom language passes
• We encapsulate circuit-specific logic in our custom passes

Tactical Computing Laboratories

StoneCutter Infrastructure

Tactical Computing Laboratories

StoneCutter
Instruction
Definitions

CoreGen
Instruction Formats

CoreGen Register
Files

SCCOMP
Command Line

Interface

StoneCutter
Language

Parser

LLVM IR

Traditional
LLVM

Optimization
Passes

StoneCutter
Custom

Optimization
Passes

StoneCutter
Safety

Optimization
Passes

StoneCutter
Chisel Code
Generator

Example LLVM Optimization Passes

CFGSimplicationPass

• Performs dead code elimination and basic
block merging

• Removes basic blocks with no
predecessors

• Merges basic blocks with simple control
flows

• Eliminates PHI nodes for basic blocks with
single predecessors

• Eliminates basic blocks with only
unconditional branches

• https://llvm.org/docs/Passes.html#simpli
fycfg-simplify-the-cfg

LICMPass

• Performs “Loop Invariant Code Motion”
• Attempts to remove code from loop

bodies
• ”Hoists” or “Sinks” unnecessary code out

of loops in order to minimize redundant
operations

• Will reduce downstream size of iterative
loop circuits

• https://llvm.org/docs/Passes.html#licm-
loop-invariant-code-motion

Tactical Computing Laboratories

https://llvm.org/docs/Passes.html
https://llvm.org/docs/Passes.html

Example StoneCutter Safety Passes

FieldIO

• Walks all the statements that write to an
output value

• Ensures that these output values are
permissible output fields

• The following values/fields are ALWAYS
read-only
• Instruction encoding fields
• Immediate value fields

• Flags the issues and halts compilation

IOWarn

• Examines the entire set of I/O statements
in an instruction definition

• Determines if the user is performing
“rogue” I/O’s

• Rogue I/O’s are reading/writing registers
that aren’t included in the instruction
format

• The downstream effect is additional data
paths in order to provide I/O capability to
additional register files

• Warns user of rogue I/O’s, but does not
prevent code generation

Tactical Computing Laboratories

Example StoneCutter Optimization Passes

PipeBuilder

• Whole ISA pipeline optimization
• Examines all instruction implementations and

records the set of operations required to
implement the entire ISA
• I/O’s (sequential and parallel)
• Arithmetic
• Flow Control

• Constructs a corollary map across instructions
in order to group like operations

• Required control signals are subsequently
generated during code generation

• **Future language support for explicit
pipeline construction

test

• test

Tactical Computing Laboratories

StoneCutter Language Specification

• Language spec is governed in the same manner as source code
development
• Changes to the spec must be received in the form of pull requests on Github
• Adjacent pull requests (that include all the necessary tests) must also exist in

StoneCutter tree
• NO changes to the spec are accepted without support in StoneCutter

• Entire language spec is documented with examples

• Latest revision:
• http://www.systemarchitect.tech/index.php/stonecutter-language-spec/

Tactical Computing Laboratories

http://www.systemarchitect.tech/index.php/stonecutter-language-spec/

StoneCutter Tool Infrastructure
Tools/API Interfaces for StoneCutter

Tactical Computing Laboratories

StoneCutter Tool/API Infrastructure

• Infrastructure/compiler implemented
as a compiler linked against LLVM libs
• libSCComp

• Language frontend
• Custom passes
• Intrinsics
• Chisel code generation

• Entire API interface is documented via
Doxygen:
• https://codedocs.xyz/opensocsysarch/Co

reGen/group__StoneCutter.html
• User-facing tools include a command

line interface and GUI
• Command Line: SCCOMP
• GUI: CoreGenPortal

Tactical Computing Laboratories

StoneCutter Infrastructure

libsccomp

LLVM Libs

CoreGenPortal

SCCOMP

Chisel
Codegen

StoneCutter
Passes

StoneCutter
Parser/Lexer

StoneCutter
Intrinsics

PassPassPassPassPass
PassPassPassPassIntrin

https://codedocs.xyz/opensocsysarch/CoreGen/group__StoneCutter.html

Graphical Interface: CoreGenPortal

• CoreGenPortal is the primary
graphical interface within System
Architect
• Written in C++
• Graphics are handled via

wxWidgets
• Currently cross platform support for

Linux (Ubuntu, CentOS) and Mac OSX
• Use cases

• For those seeking a development
environment that resembles
traditional IDE’s

• For those unfamiliar/uncomfortable
with command line tools

Tactical Computing Laboratories

Command Line Interface: sccomp

• Simple, concise command line
interface to drive
• Drives compilation/optimization

• Use cases:
• For those who prefer to utilize the

command line and write/modify
StoneCutter using text editors
• Run quick tests
• Regression/CI environments to

maintain designs

Tactical Computing Laboratories

SCCOMP Info Options

• --help : Prints the help menu
• --version : Prints the version info

Tactical Computing Laboratories

$> sccomp --help
$> sccomp --version

SCCOMP Execution Options

• Execution options require StoneCutter input input
• sscomp /path/to/input.sc

• Four execution options:
• --parse : parses & optimizes the input, but does not generate Chisel
• --chisel : parses, optimizes and generates Chisel output
• --object: parse, optimizes and generates LLVM bytecode output (utilized for

debugging)
• --keep: keep all the intermediate files (*.ll); combined with other execution options

Tactical Computing Laboratories

$> sccomp --parse test.sc
$> sccomp --chisel test.sc
$> sccomp --object test.sc
$> sccomp --chisel --keep test.sc

SCCOMP Execution Options cont.

• Additional options can be utilized
• --outfile /path/to/output.chisel : specifies output Chisel file

• The default is “test.sc.chisel” in the same path as the input chisel file
• --optimize : enables the LLVM optimizer (enabled by default)
• --no-optimize : disables the LLVM optimizer
• --disable-chisel : disables the Chisel output
• --verbose : Enable verbosity during compilation

Tactical Computing Laboratories

$> sccomp --chisel --outfile output.chisel test.sc
$> sccomp --chisel --optimize test.sc
$> sccomp --chisel --no-optimize test.sc
$> sccomp --disable-chisel --object test.sc
$> sccomp --verbose --chisel test.sc

SCCOMP Optimization Options

• Users can list all the
supported passes on
the command line
• --list-passes: prints a

table of all LLVM
passes

Tactical Computing Laboratories

$> sccomp --list-passes

SCCOMP Optimization Options cont.

• Users can also
enable/disable
individual LLVM
passes
• --enable-pass

“PASS1,PASS2”
• --disable-pass

“PASS1,PASS2”

Tactical Computing Laboratories

$> sccomp --enable-pass “LICMPass” test.sc

Intro to StoneCutter Syntax
Implementing Instructions in StoneCutter

Tactical Computing Laboratories

StoneCutter Syntax

• StoneCutter is a basic, C-like language construct that is designed to
provide users a rapid development tool for individual instructions
• Designed to support compilation of very high level language to Chisel
• Designed to support users with reasonable knowledge of hardware

architecture, but not Chisel (or Verilog) HDL
• Directly integrated into the remainder of the System Architect

infrastructure
• See slide 13 for a reference to the official StoneCutter language

specification

Tactical Computing Laboratories

StoneCutter Syntax cont.

• StoneCutter language syntax includes 10 distinct features

Tactical Computing Laboratories

• Comments
• Datatypes
• Instruction Format Definitions
• Register Class Definitions
• Instruction Prototypes

• Variable Definitions
• Arithmetic Operations
• Conditional Operations
• Loop Operations
• Intrinsic Functions

StoneCutter Syntax Notes

• Semicolons: In C, expressions are terminated by semicolons (;).
Semicolons are not required in StoneCutter.

• Complement Operations: StoneCutter provides all the standard
arithmetic, Boolean and logical operations provided by C. The one
exception are complement operations (! or ~). StoneCutter does not
have a native complement operations for binary or Boolean types.
You must utilize the “NOT” intrinsic to complement either Boolean
operations or binary operators

Tactical Computing Laboratories

StoneCutter Syntax: Comments

• Comments can be inserted into a StoneCutter implementation on
new lines or inline with the source
• All comments are preceded by the ‘#’ sign

Tactical Computing Laboratories

This is a stand alone comment
def inst0(RA RB RT){ # this is an inline comment

RT = RA + RB
}

StoneCutter Syntax: Datatypes

• StoneCutter supports a standard set of
datatypes similar to C
• Unlike C, hardware designs need the

ability to support types of arbitrary
width
• The StoneCutter type system supports

signed/unsigned types of any width {1-
N bits}

Tactical Computing Laboratories

u7 foo #-- unsigned 7 bit integer

u1024 bar #-- unsigned 1024 bit integer

s37 foobar #-- signed 37 bit integer

DR
AF
T

StoneCutter Language Spec v.0.2

2.4 Datatypes

Much in the same manner as traditional programming models such as C and C++, StoneCutter supports a
common set of datatypes for intermediate variables and registers. However, unlike traditional programming
models, hardware design languages are required to support datatypes in non-byte aligned types. In order
to provide more hardware-centric support, StoneCutter supports traditional data types as well as arbitrary
width signed and unsigned integer types. These types are documented in Table 2.

Table 2: StoneCutter Datatypes

Type Width (in bits) Description

bool 1 Boolean. Analogous to unsigned 1 bit integer (u1)
u8 8 Unsigned 8 bit integer. Analogous to uint8 t

u16 16 Unsigned 16 bit integer. Analogous to uint16 t

u32 32 Unsigned 32 bit integer. Analogous to uint32 t

u64 64 Unsigned 64 bit integer. Analogous to uint64 t

s8 8 Signed 8 bit integer. Analogous to int8 t

s16 16 Signed 16 bit integer. Analogous to int16 t

s32 32 Signed 32 bit integer. Analogous to int32 t

s64 64 Signed 64 bit integer. Analogous to int64 t

float 32 Single precision floating point
double 64 Double precision floating point

uN N bits Arbitrary unsigned integer of N bits
sN N bits Arbitrary signed integer of N bits

An example of defining arbitrary width integers is shown in Listing 3.

1 #-- unsigned 7 bit integer "foo"

2 u7 foo

3
4 #-- unsigned 1024 integer "bar"

5 u1024 bar

6
7 #-- signed 37 integer "foobar"

8 s37 foobar

Listing 3: Arbitrary Width Datatypes

StoneCutter Language Spec v.0.2 10

StoneCutter Syntax: Instruction Format
Definitions
• StoneCutter requires that users define the

instruction format utilized in the respective
instructions
• This is analogous to C-style prototypes

• Each field in the instruction format is treated as
a global variable across all instruction
definitions
• These globals can be read from or written to just

local any global variable
• Each field is designated as one of three types:

• Encoding field: enc
• Instruction encoding: Read-Only

• Immediate field: imm
• Immediate values: Read-Only

• Register Index: reg[REGCLASS]
• Register indices: Read-Write

Tactical Computing Laboratories

instformat FORMATNAME(FIELDTYPE FIELD1, FIELDTYPE FIELD2, …)

• Register index fields require an
additional syntactical note of
defining the register class that the
index is associated with
• This allows us to performs I/O’s to the

correct register file at the correct index
• See Register Class Definitions

• Note: The field names should map
back to the same naming
conventions utilized in the CoreGen
IR definition

StoneCutter Syntax: Instruction Format
Definitions cont.
• Using the Arith.if format from the Level 1

tutorial, we can define our instruction format
in StoneCutter
• Six fields:
• Register Fields: {ra, rb, rt}

• Notice that each utilizes the GPR register file
• Encoding Fields: {opc, func}
• Immeidate Field: {imm}

Tactical Computing Laboratories

instformat Arith.if(reg[GPR] ra, reg[GPR] rb, reg[GPR] rt, enc opc, enc func, imm imm)

StoneCutter Syntax: Register Class Definitions

• Users must also define the set of register classes contained within the design
• Each register class and register is raised to a global variable across all instruction

definitions
• Each register must be encapsulated in a register class
• Each register must include a datatype

• These are the datatypes defined in slide 28
• Users can create register files with mixed data types (but performance and/or

area may suffer)
• Register class and register names must map back to the names defined in your

CoreGen IR file

Tactical Computing Laboratories

regclass RCNAME(DATATYPE RegName1, DATATYPE RegName2, …)

StoneCutter Syntax: Register Class Definitions
cont.
• Using the GPR register file from our

Level 1 tutorial, we can define a register
class in StoneCutter
• 32 general purpose registers
• All are defined as unsigned 64 bit

integers

Tactical Computing Laboratories

regclass GPR(u64 r0, u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, u64 r6, u64 r7, u64
r8, u64 r9, u64 r10, u64 r11, u64 r12, u64 r13, u64 r14, u64 r15, u64 r16, u64
r17, u64 r18, u64 r19, u64 r20, u64 r21, u64 r22, u64 r23, u64 r24, u64 r25, u64
r26, u64 r27, u64 r28, u64 r29, u64 r30, u64 r31)

StoneCutter Syntax: Instruction Prototypes

• Each instruction implementation requires an instruction definition
• The instruction definition is analogous to a C-function that defines the

respective implementation of the instruction
• Each instruction implementation requires an instruction prototype
• Prototypes provide several key implementation elements:

• Instruction naming convention that matches the decoding/instruction crack logic
• The instruction format for the instruction that provides the compiler the ability to

validate the I/O structure
• The instruction arguments in the form of instruction fields, register classes or

registers that define the pipelined I/O structure

Tactical Computing Laboratories

def INSTNAME[:INSTFORMAT](ARG1 ARG2 ARG3 …){
}

StoneCutter Syntax: Instruction Prototypes
cont.
• The INSTNAME from each instruction definition must match the

complementary instruction name defined in the CoreGen IR
• The INSTFORMAT is an optional syntactical addition to the instruction

definition, however
• Defining the instruction format allows StoneCutter to correctly validate the

I/O pipeline
• Will prevent downstream issues in creating erroneous I/O paths
• The instruction format must match an existing format defined in the

instruction format block and the CoreGen IR

Tactical Computing Laboratories

def INSTNAME[:INSTFORMAT](ARG1 ARG2 ARG3 …){
}

StoneCutter Syntax: Instruction Prototypes
cont.
• The instruction argument list provides the set of standard I/O paths for the

target function
• The argument lists can include any global variables:

• Register classes
• Individual registers
• Instruction fields

• Note: Most instructions will include the register and immediate fields of
the respective register format
• These are things that are commonly utilized in the instruction body

• Note: The instruction arguments are NOT separated by commas

Tactical Computing Laboratories

def INSTNAME[:INSTFORMAT](ARG1 ARG2 ARG3 …){
}

StoneCutter Syntax: Instruction Prototypes
cont.
• Using the basic ADD instruction from the

Level 1 tutorial, we can define a simple
prototype
• Note how we define the instruction to

utilize the Arith.if format and utilize the
{ra,rb,rt} register fields as well as the imm
field from the instruction format

Tactical Computing Laboratories

def add:Arith.if(ra rb rt imm){
#-- this is the instruction body

}

StoneCutter Syntax: Variable Definitions

• Variables define permanent and temporary storage for use by the instruction implementation
• Variables can be global or local (just as in C)
• Global variables are defined within the instruction format and register classes
• Local variables are defined first in the instruction implementation body

• Just like in C where variables are defined at the top of the function
• Local variable scope is the entire instruction body

• Local variables must include an associated datatype (Slide 28)
• Local variables can be initialized with specific values
• Multiple variables with the same type can be defined together

Tactical Computing Laboratories

def INST:INSTFORMAT(…) {
DATATYPE var1
DATATYPE var2 = VALUE
DATATYPE var3, var4, …

}

StoneCutter Syntax: Variable Definitions cont.

• Variables define permanent and temporary storage for use by the instruction implementation
• Global variables reside within register file storage
• Local variables generally reside within the pipeline
• Note: Its imperative that you make good choices with respect to the datatypes of your local

variables
• StoneCutter will always attempt to do the “right thing” with respect to the values present in the operation
• Maintaining correct datatypes for the desired operation width will ensure numerical stability

• Take the following example to perform a fused multiple add operation
• **This is an incredibly simple example
• Can also be done using rt = ra + (rb * rt)

Tactical Computing Laboratories

def fadd:Arith.if(ra rb rt imm){
u64 tmp1 = 0
tmp1 = rb * rt
rt = ra + tmp1

}

StoneCutter Syntax: Variable Definitions cont.

• There are a number of special case global variable definitions
• Reading/writing these variables induces special backend I/O circuits

• Registers: directly reading/writing named registers will directly read/write
these registers within their target register files
• Registers must be defined within a register class object

• Register Fields: reading/writing register fields will manipulate the register
at the index referenced by the register field
• RegisterClass[Field] = Value

Tactical Computing Laboratories

pc = 10 #-- set the value of the pc register to 10

rt = 15 #-- write the value 15 to the register at the index in the RT field

StoneCutter Syntax: Arithmetic Operations

• The StoneCutter language supports the full complement of C arithmetic
operations in standard form:
• Output = Input <operator> Input

• As mentioned earlier, the only exception to this is the Boolean and bitwise
complement operations (!,~)
• The target (output) of all operations must be writable entities (variables or

register fields)

Tactical Computing Laboratories

u16 tmp1 = 0
rt = ra + rb #-- legal
tmp1 = ra * rb #-- legal
imm = rt #-- ILLEGAL, “imm” is a read-only instruction field

StoneCutter Syntax: Arithmetic Operations
cont.
• StoneCutter has a unique feature in that users can perform operations with inputs of any

type
• StoneCutter will attempt to up/down convert based upon the type of the output

operand
• Any time operations are upconverted, the extended bit space must be considered

volatile. You MUST utilize the sign and zero extension intrinsics in order to maintain
numerical stability
• u64 = u32 + u32

• Any time operations are truncated, the least significant N bits are always taken
• u32 = u64 + u64

Tactical Computing Laboratories

u64 tmp1, tmp2, tmp3
u32 tmp4, tmp5
tmp1 = tmp2 + tmp4 #-- tmp4 is extended to 64 bits
tmp4 = tmp1 + tmp3 #-- result is truncated to 32 bits (31:0)
tmp3 = tmp1 << tmp2 #-- result is still truncated to 64 bits

StoneCutter Syntax: Arithmetic Operations
cont.

Tactical Computing Laboratories

Operator Example Description

= RT = RB Assignment operation

+ RT = RA + RB Add operation

- RT = RA - RB Subtract operation

* RT = RA * RB Multiplication operation

\ RT = RA \ RB Division operation

% RT = RA % RB Modulo operation

& RT = RA & RB Bitwise and operation

| RT = RA | RB Bitwise or operation

^ RT = RA ^ RB Bitwise nor operation

<< RT = RA << RB Shift left operation

>> RT = RA >> RB Shift right operation

StoneCutter Syntax: Conditional Operations

• The StoneCutter language supports the use of conditional expressions
• These conditional flow control expressions mimic traditional if-else

statements in C
• The else block is optional

• The expression can be any set or combination of traditional Boolean
operations
• The conditional operations are contained within brackets {}

Tactical Computing Laboratories

if(BOOLEAN OPERATION){
#-- Conditional Body

}

if(BOOLEAN OPERATION){
}else{
}

StoneCutter Syntax: Conditional Operations
cont.
• The Boolean expressions can

compare any combination of local
variables, global variables and
immediate values
• VAR <BOOLEAN OPERATOR> VAR

• Complex operations can be
contained within parenthesis

Tactical Computing Laboratories

Operator Example Description

== RA == RB Logical equivalence

!= RA != RB Logical in-equivalence

< RA < RB Less than

> RA > RB Greater than

<= RA <= RB Less than or equal to

>= RA >= RB Greater than or equal to

&& RA && RB Logical and

|| RA || RB Logical orif((RA >RB) && (RB < RC) || (RA == RD)){
#-- Conditional Body

}

StoneCutter Syntax: Loop Operations

• StoneCutter supports a full set of for, while and do-
while loop constructs
• The syntax is analogous to traditional C-like loops

• Several nuances in the construction of for loops
• The Boolean expressions utilized to construct the loop

trips can be constructed using any Boolean operator
• See slide 44

• All loop bodies are contained within brackets
(mandatory)

Tactical Computing Laboratories

for(looptrip = base; looptrip <BOOLEAN OPERATOR> terminator){
}
for(looptrip = base; looptrip <BOOLEAN OPERATOR> terminator; iterator){
}

while(Boolean expression){
}

do{
}while(Boolean expression)

StoneCutter Syntax: For Loop Operations

• The for loop expression requires two statements in the
loop expression with an optional third statement
• Statement 1: loop trip base case

• Can be an existing variable or a new variable
• New variables will automatically be defined as new locals

• Statement 2: loop termination statement
• Utilizes all the traditional Boolean operators (<,>,<=,>=)

• Statement 3: optional iterator
• If iterators are not specified, then the loop is automatically

assumed to add “1” to for each loop trip
• Note that the loop iterators MUST be standard arithmetic

operators
• StoneCutter DOES NOT support “++”, “--”, “+=“

Tactical Computing Laboratories

#-- RA, RB, RC are existing globals
for(RA = 1; RA < RB){

#-- RA incremented by 1
}

for(RA = 20; RA > RC; RA-1){
#-- RA decremented by 1

}

#-- ‘i’ becomes a new local
for(i = 1; i < RB; i+1){

#-- i incremented by 1
}

StoneCutter Syntax: While Loop Operations

• The while loop expression requires one
statement in the loop expression
• Loop terminator statement

• While loops require that the user perform any
necessary modifications to the loop trip
counter within the loop body in order to avoid
infinite loops

Tactical Computing Laboratories

while(RA < RB){
#-- loop body
RA = RA + 1

}

StoneCutter Syntax: Do-While Loop
Operations
• The do-while loop expression requires one

statement in the loop expression
• Loop terminator statement

• Do-While loops require that the user perform
any necessary modifications to the loop trip
counter within the loop body in order to avoid
infinite loops

Tactical Computing Laboratories

do{
#-- loop body
RA = RA + 1

}while(RA < RB)

StoneCutter Syntax: Intrinsic Functions

• Much like other C/C++ language constructs, StoneCutter provides a set of builtin intrinsic
functions

• Intrinsic functions are utilized to implement pathological operations in a high performance
manner

• The intrinsic logic is expanded inline within the remainder of the StoneCutter source
• StoneCutter intrinsics behave like function calls

• Some intrinsics have return values, several modify data in line
• Most intrinsics require arguments
• StoneCutter will perform argument checking for every included intrinsic

• See Section 3 in the StoneCutter Language Spec

Tactical Computing Laboratories

#-- intrinsic with a return value
RA = INTRINSIC(ARG1, ARG2, …)

#-- inline intrinsic
INTRINSIC(ARG1, ARG2, …)

StoneCutter Syntax: Intrinsic Functions cont.
• Two types of StoneCutter intrinsics: arithmetic and memory
• Arithmetic Intrinsics

• Perform some notional permutation on the input arguments
• Returns the result of the permutation

• A = INTRIN(B)

• Memory Intrinsics
• Perform loads/stores to/from memory
• Links the instruction to the memory pipeline
• Load operations return data

• A = LOAD(B)
• Store operations do not return data

• STORE(DATA, ADDR)

Tactical Computing Laboratories

#-- LOAD intrinsic with a return value
RA = LOAD(ARG1)

#-- STORE intrinsic with no return value
STORE(RA, RB)

StoneCutter Syntax: Intrinsic Arguments

• Unlike C-style intrinsics, StoneCutter intrinsics are typeless
• Each intrinsic can accept any argument of any type or bit width
• The compiler expands the intrinsic using the appropriate

input/output data types with the correct internal logic
• Note: Intrinsic functions are very literal! Be sure to understand how

specific intrinsic functions react to certain input types. Pay special
attention to the expected output type.

Tactical Computing Laboratories

u8 var1 = 1234
u64 var2 = 123456789

RA = POPCOUNT(var1)
RB = POPCOUNT(var2)

Implementing a Basic RISC Device
Implementing a basic RISC device with System Architect and StoneCutter

Tactical Computing Laboratories

Tutorial Source

• Tutorial source is published in a Github repository

• All design source code is open source under an Apache2 license
• Feel free to reuse it!!

• https://github.com/opensocsysarch/CoreGenTutorials
• See the LEVEL2 subdirectory

Tactical Computing Laboratories

https://github.com/opensocsysarch/CoreGenTutorials

Tutorial Assumptions

• Standard installation location:
• “/opt/coregen”
• EG, the “sccomp” binary will be located at /opt/coregen/bin/sccomp
• We don’t explicitly reference the fully qualified path in the tutorial

• Text editing is required!
• Emacs and Vim are most prevalent, but any standard text editor will suffice

• Basic command line knowledge is required
• Executing commands with arguments

• Basic knowledge of Git/Github
• Only required if you seek to download/edit the tutorial content

Tactical Computing Laboratories

BasicRISC Core

• The remainder of this Level 2
tutorial will build upon the Level
1 tutorial material
• We will extend the original Level

1 design with the necessary
instruction implementations
• This will include all the

instructions defined in our
BasicRISC Core

Tactical Computing Laboratories

RISC ALU

General Purpose
Registers

Control Registers

Memory Interface

CoreGen and StoneCutter

• One of the nice features of CoreGen is the
ability to directly integrate the StoneCutter
syntax into the CoreGen IR design files

• This allows you to inline the instruction
implementation in the design

• CoreGen autogenerates all the instruction
format and register class blocks without user
intervention

• Permits users to focus on the specific
instruction implementations
• Reduces the ramp to become proficient with

StoneCutter
• All of our work will be done in the CoreGen

IR file from the Level 1 tutorial

Tactical Computing Laboratories

BasicRISC ISA

• Traditional RISC ISA
• Opcodes (opc) determine the “class”

of instructions
• Function codes (func) determine the

target instruction
• Instructions are grouped by their

argument types:
• INST GPR, GPR, GPR
• INST GPR, CTRL, GPR
• INST CTRL, GPR, GPR

• Plenty of opcode/function space to
expand for your own use

• Arithmetic:
• Integer arithmetic (2’s-complement)
• Add, Sub, Mul, Div
• Logical/Arithmetic shifts
• Logicals (AND, OR, NAND, NOR, XOR,

NOT)

• Comparisons:
• Compare {NE, EQ, GT, LT, GTE, LTE}

• Branches
• Conditional and unconditional
• Absolute and relative (jump)

Tactical Computing Laboratories

See BasicRISCInstTable for a full
instruction set listing

Directly Editing CoreGen Yaml IR

• Yaml IR is ASCII text
• Hierarchy is determined by indentions

• Indentions are SPACES, not tabs
• Each indentation should be two (2) spaces

• You can use any potential editor!
• A few important notes:

• Nodes are parsed in the correct order regardless
of their order in the file
• We do this to preserve the natural hierarchy and

dependence between nodes
• Node names are case sensitive

• “RegName” != “Regname”
• Certain nodes have required and optional

attributes
• Refer to the IR documentation for what is optional

• Comments are delineated with ‘#’ characters
• Similar to BASH shell scripts

#-- this is a comment
NODE:
- SubNode: Name1
Attribute1: 64
Attribute2: false
Attribute3: This_Is_A_String

- SubNode: FOO
Bars:
- bar0
- bar1
- bar2

Tactical Computing Laboratories

Example CoreGen Yaml IR Formatting

Ten Design Steps for Level 2

• Step 1: Copy the CoreGen Yaml
IR file from the Level 1/Step 10
directory
• Step 2: Update the project

definition for our Level 2
directory structure
• Step 3: Implement the

arithmetic instructions
• Step 4: Implement the

comparison instructions

• Step 5: Implement the
load/store instructions
• Step 6: Implement the logical

NOT instruction
• Step 7: Implement the branch

instructions
• Step 8: Implement the control

instructions
• Step 9: Compile the StoneCutter

source

Tactical Computing Laboratories

The CoreGen IR for each step is outlined in ~/CoreGenTutorials/LEVEL2/StepN

Step 1: Copy the basic project files

• The first step in the Level 2
tutorial is to copy over the
CoreGen design input from
Step10 of the Level1 tutorial
• We will build upon the work

done in the Level 1 tutorial
material

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step1

$> cd ~/CoreGenTutorials/LEVEL2/Step1

$> cp ../LEVEL1/Step10/BasicRISC.yaml ./

Step 2: Update the project definition

• With the Level 2 tutorial, we need
to define the project structure
• The project structure will be utilized

to generate all the necessary
directory structure and
intermediate makefiles
• Edit the BasicRISC.yaml file and

specify a new ProjectRoot directory
• This will place all our generated files in

the ./BasicRISC directory

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step2

ProjectInfo Section

ProjectInfo:

- ProjectName: BasicRISC
ProjectRoot: ./BasicRISC
ProjectType: soc
ChiselMajorVersion: 3
ChiselMinorVersion: 0

Step 3: Implement the arithmetic instructions

• In this stage of the tutorial, we will begin
implementing instructions

• Rather than implementing our StoneCutter
source code by hand, we will utilize a unique
feature of CoreGen to assist our development
process

• CoreGen can directly include inline
StoneCutter language syntax in the design
input (YAML)
• Users define the body of each instruction
• CoreGen will automatically generate all the

instruction formats, register class and instruction
prototypes

• Each instruction block in the YAML input will
require a new attribute: Impl

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step3

Impl: Insert StoneCutter syntax here

Step 3: Implement the arithmetic instructions
• In this stage of the tutorial, we will begin

implementing instructions
• Rather than implementing our StoneCutter

source code by hand, we will utilize a unique
feature of CoreGen to assist our development
process

• CoreGen can directly include inline
StoneCutter language syntax in the design
input (YAML)
• Users define the body of each instruction
• CoreGen will automatically generate all the

instruction formats, register class and instruction
prototypes

• Each instruction block in the YAML input will
require a new attribute: Impl
• Impl attributes may include any syntactical

nuances, including newlines, brackets, etc

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step3

Insts:
- Inst: add

ISA: BasicRISC.ISA
InstFormat: Arith.if
Encodings:

- EncodingField: opc
EncodingWidth: 5
EncodingValue: 0

- EncodingField: func
EncodingWidth: 5
EncodingValue: 0

- EncodingField: imm
EncodingWidth: 7
EncodingValue: 0

Impl: Insert StoneCutter syntax here

Step 3: Implement the arithmetic instructions cont.

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step3

instformat Arith.if(reg[GPR] ra,reg[GPR] rb,reg[GPR]
rt,enc opc,enc func,imm imm)

regclass GPR(u64 r0, u64 r1, u64 r2, u64 r3, u64 r4,
u64 r5, u64 r6, u64 r7, u64 r8, u64 r9, u64 r10, u64 r11,
u64 r12, u64 r13, u64 r14, u64 r15, u64 r16, u64 r17,
u64 r18, u64 r19, u64 r20, u64 r21, u64 r22, u64 r23,
u64 r24, u64 r25, u64 r26, u64 r27, u64 r28, u64 r29,
u64 r30, u64 r31)

def add(ra rb rt imm)
{
rt = ra + rb
}

Insts:
- Inst: add

ISA: BasicRISC.ISA
InstFormat: Arith.if
Encodings:

- EncodingField: opc
EncodingWidth: 5
EncodingValue: 0

- EncodingField: func
EncodingWidth: 5
EncodingValue: 0

- EncodingField: imm
EncodingWidth: 7
EncodingValue: 0

Impl: rt = ra + rb

CoreGen
Design
Input

Generated
StoneCutter

Output

Step 3: Implement the arithmetic instructions
cont.
• Arithmetic instructions we need

to implement:

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step3

add: rt = ra + rb
sub: rt = ra - rb
mul: rt = ra * rb
div: rt = ra / rb
divu: rt = ra / rb
sll: rt = ra << rb
srl: rt = ra >> rb
sra: rt = ra >> rb
and: rt = ra & rb
or: rt = ra | rb

#-- note how we use intrinsics
nand: rt = NOT(ra & rb)
nor: rt = NOT(ra | rb)

xor: rt = ra ^ rb

• add
• sub
• mul
• div
• divu
• sll

• srl
• sra
• and
• or
• nand
• nor
• xor

Step 4: Implement the comparison
instructions
• Using the same technique, we need

to implement our comparison
instructions that utilize if/else
clauses
• Instructions:

• cmp.ne
• cmp.eq
• cmp.gt
• cmp.lt
• cmp.gte
• cmp.lte

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step4

cmp.ne: if(ra != rb){ rt = 2 }else{ rt = 0 }

cmp.eq: if(ra == rb){ rt = 3 }else{ rt = 0 }

cmp.gt: if(ra > rb){ rt = 4 }else{ rt = 0 }

cmp.lt: if(ra < rb){ rt = 5 }else{ rt = 0 }

cmp.gte: if(ra >= rb){ rt = 6 }else{ rt = 0 }

cmp.lte: if(ra <= rb){ rt = 7 }else{ rt = 0 }

Step 5: Implement the load/store instructions

• Using the same techniques, we need
to define our load/store instructions
• Note that we will utilize memory intrinsics

to enable the memory pipeline

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step5

lb: rt = SEXT(LOADELEM(ra+imm,8),7)
lh: rt = SEXT(LOADELEM(ra+imm,16),15)
lw: rt = SEXT(LOADELEM(ra+imm,32),31)
ld: rt = LOADELEM(ra+imm,64)
sb: STOREELEM(SEXT(ra,7),rt+imm,8)
sh: STOREELEM(SEXT(ra,15),rt+imm,16)
sw: STOREELEM(SEXT(ra,31),rt+imm,32)
sd: STOREELEM(ra,rt+imm,64)
lbu: rt = ZEXT(LOADELEM(ra+imm,8),7)
lhu: rt = ZEXT(LOADELEM(ra+imm,16),15)
lwu: rt = ZEXT(LOADELEM(ra+imm,32),31)
sbu: STOREELEM(ZEXT(ra,7),rt+imm,8)
shu: STOREELEM(ZEXT(ra,15),rt+imm,16)
swu: STOREELEM(ZEXT(ra,31),rt+imm,32)

• lb
• lh
• lw
• ld
• sb
• sh
• sw
• sd

• lbu

• lhu

• lwu

• sbu

• shu

• swu

Step 6: Implement the logical NOT instruction

• Using the same techniques, we
can now implement the logical
NOT instruction
• Two operand instruction
• Utilizes the NOT intrinsic to

implement the only valid input
argument

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step6

not: rt = NOT(ra)

Step 7: Implement the branch instructions

• Using the same techniques, we can now
implement the branch instructions

• These are unique in that they utilize
mixtures of explicit registers (pc, rp) as
well as register inputs from the instruction
payload
• We also utilize if/else expressions for

conditional branches

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step7

bra: pc = rt

br: pc = pc + r)

brac: if(ra == rb){ pc = rt }else{ pc = pc + 4 }

brc: if(ra == rb){ pc = pc + rt }else{ pc = pc + 4 }• bra
• br
• brac
• brc

Step 8: Implement the control instructions

• Using the same techniques,
implement our move to/from
control instructions
• Note that we utilize the

traditional RISC method of doing
so: add pipeline
• Instructions
• ladd
• cadd

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step8

ladd: rt = ra + rb

cadd: rt = ra + rb

Step 9: Compile the StoneCutter source

• Now that we have our entire ISA implementation defined, we
must perform two steps to generate the Chisel output

1. Execute the CoreGen code generator to construct the directory
structure and our master StoneCutter file

2. Compile the StoneCutter master implementation file

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step9

Step 9: Compile the StoneCutter source cont.
• Ensure that the CGCLI binary is in

your path
• Execute the CoreGen code

generator in order to generate
the necessary directory structure
and the master StoneCutter
source file

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step9

$> cgcli --chisel --ir BasicRISC.yaml

• This will generate the
./BasicRISC/ directory
• Your StoneCutter source file will

reside in
./BasicRISC/RTL/stonecutter/Basi
cRISC.ISA.sc
• The file name is inherited from the

name of the ISA from the YAML
input

Step 9: Compile the StoneCutter source cont.

Tactical Computing Laboratories

Instruction
Formats

Instruction
Definitions

Register
Classes

Step 9: Compile the StoneCutter source cont.
• Now that we have the full

StoneCutter source, we can
compile it to Chisel
• Ensure that the SCCOMP binary

is in your path

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step9

$> sccomp --chisel ./BasicRISC/RTL/stonecutter/BasicRISC.ISA.sc

• Note: we will see some warnings
from the StoneCutter compiler
• But why!?

Step 9: Compile the StoneCutter source cont.
• As mentioned in the intro, StoneCutter

includes a set of safety and
performance optimization passes
• The safety passes analyze the structure

of the instruction implementation in
order to verify whether the
implementation is safe and/or induces
unwanted performance idiosyncrasies
• Optimization passes modify the source

in a safe manner in order to improve
performance
• Both of the arithmetic pipeline and the

I/O channels

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step9

• The warnings we saw when compiling our
source come from the IOWarn pass

• The IOWarn pass analyzes the use of all global
variables in order to ensure that the
instruction format has predefined I/O paths
for the appropriate variables
• Reading/Writing registers outside of these paths

will force the StoneCutter compiler to generate
additional paths, which may have a negative
effect on performance

• The branch instructions flagged by the warning
exhibit this case
• The branch instructions are of type Arith.if, which

only include paths for GPR registers
• The PC register is a CTRL register, thus an

additional path is generated
• Given that branches are known to be latent

instructions, this is ok for our design

Step 9: Compile the StoneCutter source cont.

Tactical Computing Laboratories

~/CoreGenTutorials/LEVEL2/Step9

GPR Register File

CTRL Register File

Branch Logic

ALU

RA

RB

Arith.if: RT = GPR; RA = GPR; RB = GPR

RT

PC

Standard I/O Path

Additional I/O Path

The IOWarn pass
detects the
additional required
I/O path and warns
the user. This is
NOT an error, just a
warning

References
Where do I find more info?

Tactical Computing Laboratories

Web Links

• System Architect Public Web
• http://www.systemarchitect.tech/

• Documentation
• Latest StoneCutter Specification:

• http://www.systemarchitect.tech/index.php/stonecutter-language-spec/

• Tutorials
• http://www.systemarchitect.tech/index.php/tutorials/
• https://github.com/opensocsysarch/CoreGenTutorials

Tactical Computing Laboratories

http://www.systemarchitect.tech/
http://www.systemarchitect.tech/index.php/stonecutter-language-spec/
http://www.systemarchitect.tech/index.php/tutorials/
https://github.com/opensocsysarch/CoreGenTutorials

Source Code

• Main source code hosted on Github:
• https://github.com/opensocsysarch

• CoreGen Infrastructure
• https://github.com/opensocsysarch/CoreGen

• CoreGenPortal GUI
• https://github.com/opensocsysarch/CoreGenPortal

• CoreGen IR Spec
• https://github.com/opensocsysarch/CoreGenIRSpec

• StoneCutter Language Spec
• https://github.com/opensysarch/StoneCutterLanguageSpec

• System Architect Weekly Development Releases
• https://github.com/opensocsysarch/SystemArchitectRelease

Tactical Computing Laboratories

https://github.com/opensocsysarch
https://github.com/opensocsysarch/CoreGen
https://github.com/opensocsysarch/CoreGenPortal
https://github.com/opensocsysarch/CoreGenIRSpec
https://github.com/opensysarch/StoneCutterLanguageSpec
https://github.com/opensocsysarch/SystemArchitectRelease

Contact

• Issues should be submitted through the respective Github issues
pages (see source code links)

• Mailing Lists:
• http://www.systemarchitect.tech/index.php/lists/

• Direct developer contacts
• John Leidel: jleidel<at>tactcomplabs<dot>com
• Frank Conlon: fconlon<at>tactcomplabs<dot>com

Tactical Computing Laboratories

http://www.systemarchitect.tech/index.php/lists/

