
Design Concepts with System
Architect: Level 0

John Leidel
Chief Scientist, Tactical Computing Laboratories

ver 2019.03.19

Tactical Computing Laboratories

Tutorial Series

• Level 0: Introduction to System Architect

• Level 1: System Architect Design Concepts and Developing a basic RISC
processor

• Level 2: Instruction-Level (StoneCutter) Implementation Concepts

• Level 3: Advanced Design Concepts

• Level 4: System Architect Plugins and Integrating External RTL

Tactical Computing Laboratories

System Architect Overview
Modular, High-Level Design Concepts

Tactical Computing Laboratories

What is System Architect?

• A family of tools, APIs and associated infrastructure to permit users to
rapidly develop multi-faceted hardware
• Utilizes a combination of modular hardware design reuse principles,

object oriented development and dependence analysis techniques
(compiler theory) to provide an infrastructure for:
• Design & Design Experimentation
• High Level Verification

• The artifacts generated by a System Architect design flow include:
• Chisel HDL and Verilog RTL
• C++ cycle-based simulator
• LLVM compiler

Tactical Computing Laboratories

What is System Architect NOT?

• System Architect is not the latest C-to-gates tool
• It permits rapid design, verification and reuse
• It does not auto-generate hardware based upon application code

• System Architect still relies upon the user to utilize reasonable design
concepts
• System Architect will not auto-generate optimized designs based upon unreasonable

inputs
• Users need to have a concept of the physical platform (FPGA, ASIC, etc)

• System Architect does not currently have a notion of physical layout
• The generated output will not include LUT counts, physical design dimensions or

power estimates
• External FPGA/ASIC tools are required for this level of detail

Tactical Computing Laboratories

System Architect Design Flow

Tactical Computing Laboratories

Design Input IR Verification Code Generation

Chisel HDL

LLVM Compiler

Verilog

C++
Simulator

User

The user inputs their
design using the GUI or
text editor. This
includes the design
parameters and logic for
each instruction

The design input
is stored in the
CoreGen
intermediate
representation
(IR)

The user then executes verification
passes against the design in order
to ensure the design is correct and
optimal. Users have the option of
executing special passes to
generate design documentation

The user executes the
codegen in order to
generate the Chisel HDL
and/or the LLVM compiler
for the target design

The user an now optionally
utilize the Chisel HDL to
generate the Verilog
representation and the C++
simulator. The LLVM
compiler can be utilized to
drive binary payloads for
the C++ simulator

Verilog output
can be utilized
for downstream
synthesis and
layout tools

Typical System Architect Design Flows
Rapid ISA Development
• Rapid development of

ISA’s with backend RTL
and LLVM compiler as
artifacts

• Cycle-based simulator
that supports
immediate
experimentation

• Rapid design evaluation
and prototyping

• High level verification of
design before synthesis

Tactical Computing Laboratories

Modular Design

• Multi-module
design and
integration
• Integration with

other System
Architect designs
(sub-designs)
• External module

integration
• Plugin support for

custom-modularity

Compiler Environment
• Auto-generated LLVM

compiler infrastructure
from design parameters

• Modern C/C++ frontend
support
• Other frontends can be

supported as well
• Re-useable as LLVM

mainline continues to
develop
• Re-spinning entire

compiler based on new
LLVM versions is
automated

2/10/17 7

IR	Generated	and	
Cores

CGCLI
Command Line

Interface

User Interfaces

CoreGen
Infrastructure

CoreGen PluginCoreGen PluginCoreGen PluginCoreGen PluginCoreGen PluginCoreGen Plugin

StoneCutter
Compiler

SC InputSC InputSC InputSC InputSC InputSC Input

CodeGen

LLVM Source
Compiler

Chisel
HDL

Backend Infrastructure

YAML
IR

Verilog C++ Cycle
Sim

System Architect Infrastructure

Tactical Computing Laboratories

How does it work?
• We input designs in the user-facing tools and generate

CoreGen Intermediate Representation (IR)
• The IR preserves the natural dependencies within the design

• Register classes depend upon registers
• Instruction formats depend upon register classes
• Instruction sets depend upon instructions
• Cores require instruction sets

• We execute high level verification “passes” against the IR
• Similar in design to traditional compiler passes
• Walks the IR dependence graph and derives properties of the

design
• Reports issues in the design infrastructure, outputs interesting

data or optimizes the design infrastructure

• Users implement instructions in StoneCutter instruction
implementation language
• C-like integrated with CoreGen IR to define a single instruction
• Optimized by a traditional compiler flow to generate Chisel HDL

for a single instruction

• Following the high level verification phase, we execute
generate downstream code (code generation)
• Generates Chisel HDL

• Compiled down to Verilog & C++ cycle-based simulator
• Generates LLVM compiler for the target design

Tactical Computing Laboratories

Example
dependence
graph from
CoreGen
design input

CoreGen IR Passes
• Passes can be selectively enabled or disabled by the

user (just like a normal compiler)
• Four types of passes

• Analysis
• Analyze the connectivity and the structure of the graph
• Reports back the identified state to the user
• DOES NOT modify the graph (IR is unchanged)

• Optimization
• Optimizes connectivity and structure of the graph
• Much like Kennedy/Callahan dependence analysis/optimization
• MODIFIES the dependence graph (IR is changed)

• Data
• Generates statistical data/output based upon the

structure/content of the graph
• EG, outputs a LaTeX specification document based upon the

respective ISA
• DOES NOT modify the graph (IR is unchanged)

• System
• Mixtures of each of the aforementioned pass types
• Must be manually instantiated by the tools/users

Tactical Computing Laboratories

• The internal representation of the
IR is stored as a directed acyclic
graph (DAG)
• Contains four levels that describe

varying levels of detail
• This is a performance optimization
• Each subsequent level is a superset

of the previous level
• !"#"$%&' ⊇ !"#"$%

CoreGen IR Passes: Example Analysis Passes

RegSafetyPass/RegIdxPass

• Find inconsistencies between registers
within the same register file
• Multiple registers with the same index
• Registers with missing indicies
• Registers with prescribed values >

than their bit width
• Sub-register fields with overlapping

names
• Sub-register fields with overlapping

bit field definitions

EncodingCollisionPass

• Identifies potential ISA encoding
issues
• Utilizes all instruction formats within

an ISA
• Builds a table of every known

instruction within the ISA
• Initializes a bit vector for every

instruction using the encoding (eg,
opcode), immediate values and register
fields (bitmask)

• Examines collisions in the “loaded”
encodings

Tactical Computing Laboratories

CoreGen IR Passes: Example Data Passes

StatsPass

• Walks the entire dependence graph
and collects data about the
connectivity of the graph and
incidence of the nodes
• Reports the number of adjacent

dependent nodes for each node in the
graph (outdegree)
• Reports final counts of the incidence

of each node type

SpecDoc

• Walks the entire dependence graph
and collects data about the encoding
infrastructure of the ISA and portions
of the micro architecture
• Outputs a specification document in

LaTeX that details each of:
• Register Classes
• Register Encodings

• Subregister encodings (bit fields within
register)

• Instruction Formats
• Instruction Encodings
• Master instruction table

Tactical Computing Laboratories

CoreGen IR Passes: Example System Passes

SafeDeletePass

• Determines whether removing a
node from the graph is safe
• For example:

• ”If I remove this register, will I break
the dependence graph?”

• “If I remove this encoding format, will
I break the dependence graph?”

• Generally utilized within other
tooling, but can be utilized directly
by the user

ASPSolverPass

• Utilized when an existing analysis
pass does not find a specific corner
case
• Can be used to “programmatically”

define new dependence solvers
using a specific syntax
• Can be utilized as design

constraints and/or regression tests
to ensure specific
functionality/connectivity exists in
a design

Tactical Computing Laboratories

CoreGen Infrastructure

• All hardware modules/units are defined as DAG
nodes
• Dependence graph between nodes is “lowered”

in multiple stages in order to expose increasing
levels of complexity
• Similar to Open64 notion of multi-dimensional IR

• DAG Levels:
• Level 0: Basic node connectivity
• Level 1: Expands “extension” nodes to contain all their

children
• Level 2: Expands all communication links
• Level 3: Expands all instruction and register encodings

Cache Level

Comm Channel

Core

Instruction

PseudoInst

Encoding

ISA

Register Class

Register

SoC

Spads

VtoP

Plugins

Tactical Computing Laboratories

What type of nodes in the CoreGen IR?

• SoC Nodes: Defines a top-level system on chip (one per design)
• Core Nodes: Defines a single core with associated ISA and dependent

nodes
• ISA Nodes: Defines an instruction set architecture container
• Instruction Format Nodes: Defines an instruction format with all of its sub-

fields
• Sub-fields have properties that define encoding fields, register fields, immediate

value fields, etc
• Instruction Nodes: Defines a single instruction based upon a prescribed

instruction format.
• Ability to define encodings, register classes for register fields, immediate values, etc

Tactical Computing Laboratories

What type of nodes in the CoreGen IR (cont)?

• Pseudo Instruction Nodes: Defines specific encodings for existing
instructions
• Ability to define prescribed encoding fields as static (eg, immediate = 0x00)
• DOES NOT induce instruction encoding collisions
• EG: ”MOV RT, Ra” = “ADD RT, Ra, $0”

• Register Class Nodes: Defines a container node with multiple dependent
registers. Register indices within a register class cannot overlap
• Register Nodes: Defines a single register node with an index, bit width,

sub-register fields and attributes (RO, RW, etc)
• Encoding Nodes: Define encodings for parent nodes (EG, register

encodings)
• Cache Nodes: Defines a single cache layer

• Can be interconnected into multi-level caches

Tactical Computing Laboratories

What type of nodes in the CoreGen IR (cont)?

• Communication Channel Nodes: Interconnect multiple nodes via on-chip data+control
paths
• Multiple topologies supported

• Scratchpad Nodes: Represent addressable on-chip scratchpads
• Memory Controller Nodes: Represents a basic memory controller with multiple

input/output ports
• Virtual to Physical Nodes: Handles virtual to physical memory translation
• **Extension Nodes: Special node type that permits users to “import” other CoreGen-

developed project artifacts into other projects
• Accelerators are excellent examples of extensions

• **Plugin Nodes: Special node type that represents a third-party templated design
• Can contain unlimited number of special properties (not defined by standard CoreGen IR spec)
• May also contain custom code generation facilities to output any style of HDL/RTL, etc

Tactical Computing Laboratories

CoreGen Plugins

• CoreGen plugins are containers for self-
contained extensions
• Each plugin is effectively its own template
• Bundled as a shared library (can be licensed and

distributed outside of System Architect)
• These can be:

• Cores, ISAs, cache modules, periphery components,
etc

• Each plugin can drive unique “code generators”
to modify their internal HDL state and/or
generate the source compiler
• Projects can import any number of plugins
• DAG analysis works across plugins

Extension

Plugin

Node

Node

Node

Node

Extension

Plugin

Node

Node

System Architect Project

Tactical Computing Laboratories

CoreGen IR Specification

• IR Spec is governed in the same manner as source code development

• Changes to the spec must be received in the form of pull requests on Github

• Adjacent pull requests (that include all the necessary tests) must also exist in

CoreGen library tree

• NO changes to the spec are accepted without support in CoreGen

• Entire IR spec is documented with examples

• Latest revision:

• http://www.systemarchitect.tech/index.php/coregenirspec/

Tactical Computing Laboratories

http://www.systemarchitect.tech/index.php/coregenirspec/

What now?

• Level 1 Tutorial: Describes basic design concepts and walks through the
initial definition of a RISC-like design

• Level 2 Tutorial: Implementing individual instructions using the
StoneCutter language and compiler
• Extends the design from Level 1

• Level 3 Tutorial: Advanced design and implementation concepts
• Extends the work done in Level 2

• Level 4 Tutorial: Building external plugins and integrating external RTL
• How do we integrate existing IP?

Tactical Computing Laboratories

What do you need to continue?

• Linux/OSX system with the tools installed
• Prebuilt packages are available:
• https://github.com/opensocsysarch/SystemArchitectRelease

• Text editor
• VIM, Emacs, Notepad, etc

• For those seeking to use the GUI
• Graphics environment (X11, OSX, etc)

• Basic knowledge of computer architecture
• Basic knowledge of software architecture

Tactical Computing Laboratories

https://github.com/opensocsysarch/SystemArchitectRelease

References
Where do I find more info?

Tactical Computing Laboratories

Web Links

• System Architect Public Web
• http://www.systemarchitect.tech/

• Documentation
• Latest IR Specification:

• http://www.systemarchitect.tech/index.php/coregenirspec/

• Tutorials
• http://www.systemarchitect.tech/index.php/tutorials/
• https://github.com/opensocsysarch/CoreGenTutorials

Tactical Computing Laboratories

http://www.systemarchitect.tech/
http://www.systemarchitect.tech/index.php/coregenirspec/
http://www.systemarchitect.tech/index.php/tutorials/
https://github.com/opensocsysarch/CoreGenTutorials

Source Code

• Main source code hosted on Github:
• https://github.com/opensocsysarch

• CoreGen Infrastructure
• https://github.com/opensocsysarch/CoreGen

• CoreGenPortal GUI
• https://github.com/opensocsysarch/CoreGenPortal

• CoreGen IR Spec
• https://github.com/opensocsysarch/CoreGenIRSpec

• System Architect Weekly Development Releases
• https://github.com/opensocsysarch/SystemArchitectRelease

Tactical Computing Laboratories

https://github.com/opensocsysarch
https://github.com/opensocsysarch/CoreGen
https://github.com/opensocsysarch/CoreGenPortal
https://github.com/opensocsysarch/CoreGenIRSpec
https://github.com/opensocsysarch/SystemArchitectRelease

Contact

• Issues should be submitted through the respective Github issues
pages (see source code links)

• Mailing Lists:
• http://www.systemarchitect.tech/index.php/lists/

• Direct developer contacts
• John Leidel: jleidel<at>tactcomplabs<dot>com
• Frank Conlon: fconlon<at>tactcomplabs<dot>com

Tactical Computing Laboratories

http://www.systemarchitect.tech/index.php/lists/

