Design Concepts with System
Architect: Level O

John Leidel

Chief Scientist, Tactical Computing Laboratories

ver 2019.03.19 O S C

Tactical Computing Laboratories

Tutorial Series

* Level O: Introduction to System Architect

e Level 1: System Architect Design Concepts and Developing a basic RISC
processor

* Level 2: Instruction-Level (StoneCutter) Implementation Concepts

* Level 3: Advanced Design Concepts

* Level 4: System Architect Plugins and Integrating External RTL

System Architect Overview

Modular, High-Level Design Concepts

Tactical Computing Laboratories

What is System Architect?

* A family of tools, APls and associated infrastructure to permit users to
rapidly develop multi-faceted hardware

 Utilizes a combination of modular hardware design reuse principles,
object oriented development and dependence analysis techniques
(compiler theory) to provide an infrastructure for:
* Design & Design Experimentation
* High Level Verification

* The artifacts generated by a System Architect design flow include:
e Chisel HDL and Verilog RTL
e C++ cycle-based simulator
* LLVM compiler OperSeC

Tactical Computing Laboratories A

i) /‘T/H\ /—\ru w=ea

What is System Architect NOT?

* System Architect is not the latest C-to-gates tool
* It permits rapid design, verification and reuse
* |t does not auto-generate hardware based upon application code

» System Architect still relies upon the user to utilize reasonable design
concepts

e System Architect will not auto-generate optimized designs based upon unreasonable
inputs

* Users need to have a concept of the physical platform (FPGA, ASIC, etc)

» System Architect does not currently have a notion of physical layout

* The generated output will not include LUT counts, physical design dimensions or
power estimates

» External FPGA/ASIC tools are required for this level of detail

_) ,/V"‘*z 1T //“ff l'(;;’.f

System Architect Design Flow

) T
The user inputs their The user then executes verification Th.e. useran npw optionally | Verilog Ol_Jt_pUt
design using the GUI or passes against the design in order utilize the Chisel HDL to | can be utilized
text editor. This to ensure the design is correct and generate the Verilog | for downstream
includes the design optimal. Users have the option of representation and the C++ | synthesis and
parameters and logic for executing special passes to simulator. The LLVM | layouttools
each instruction generate design documentation co‘mp|l.er can be utilized to i
: ‘ drive binary payloads for !
i The design input ! the C++ simulator Y
| is stored in the | ;
i CoreGen i The user gxecutes the 3 Verilog
i intermediate 5 codegen in orde.r to 3
| representation | generate the Chisel HDL v
! (IR) | and/or the LLVM compiler
| 3 | for the target design Chisel HDL
v v v v
: P : C++
DesignInput = IR = Verification 2 Code Generation :
Simulator
A\\
LLVM Compiler ,
e ()penxd

User (h

Typical System Architect Design Flows

Rapid ISA Development

Modular Design

Compiler Environment

e Rapid development of
ISA’s with backend RTL
and LLVM compiler as
artifacts

* Cycle-based simulator
that supports
immediate
experimentation

* Rapid design evaluation
and prototyping

* High level verification of
design before synthesis

* Multi-module
design and
integration

* Integration with
other System
Architect designs
(sub-designs)

e External module
integration

* Plugin support for
custom-modularity

* Auto-generated LLVM
compiler infrastructure
from design parameters

* Modern C/C++ frontend
support

e Other frontends can be
supported as well

e Re-useable as LLVM
mainline continues to
develop

* Re-spinning entire
compiler based on new

LLVM versions is
automated

System Architect Infrastructure

User Interfaces

Backend Infrastructure

Tactical Computing Laboratories

How does it work?

We input designs in the user-facing tools and generate
CoreGen Intermediate Representation (IR)

The IR preserves the natural dependencies within the design
* Register classes depend upon registers
* Instruction formats depend upon register classes
* Instruction sets depend upon instructions
* Cores require instruction sets

We execute high level verification “passes” against the IR
* Similar in design to traditional compiler passes

* Walks the IR dependence graph and derives properties of the
design

* Reports issues in the design infrastructure, outputs interesting
data or optimizes the design infrastructure

Users implement instructions in StoneCutter instruction
implementation language
* C-like integrated with CoreGen IR to define a single instruction
* Optimized by a traditional compiler flow to generate Chisel HDL
for a single instruction

Following the high level verification phase, we execute
generate downstream code (code generation)

* Generates Chisel HDL
e Compiled down to Verilog & C++ cycle-based simulator
* Generates LLVM compiler for the target design

Example
dependence
graph from
CoreGen
design input

CoreGen IR Passes

* Passes can be selectively enabled or disabled by the
user (just like a normal compiler)

* Four types of passes
* Analysis
* Analyze the connectivity and the structure of the graph

Reports back the identified state to the user
DOES NOT modify the graph (IR is unchanged)

* Optimization
Optimizes connectivity and structure of the graph
Much like Kennedy/Callahan dependence analysis/optimization
MODIFIES the dependence graph (IR is changed)

* Data

Generates statistical data/output based upon the
structure/content of the graph

EG, outputs a LaTeX specification document based upon the
respective ISA

DOES NOT modify the graph (IR is unchanged)

* System
Mixtures of each of the aforementioned pass types
Must be manually instantiated by the tools/users

* The internal representation of the
IR is stored as a directed acyclic
graph (DAG)

e Contains four levels that describe
varying levels of detail
* This is a performance optimization

e Each subsequent level is a superset
of the previous level

e LevelN*1 2 LevelV

CoreGen IR Passes: Example Analysis Passes

RegSafetyPass/RegldxPass

EncodingCollisionPass

* Find inconsistencies between registers
within the same register file

* Multiple registers with the same index
* Registers with missing indicies

* Registers with prescribed values >
than their bit width

e Sub-register fields with overlapping
names

e Sub-register fields with overlapping
bit field definitions

|dentifies potential ISA encoding
issues

Utilizes all instruction formats within
an ISA

Builds a table of every known
instruction within the ISA

* Initializes a bit vector for every
instruction using the encoding (eg,
opcode), immediate values and register
fields (bitmask)

Examines collisions in the “loaded”
encodings

CoreGen IR Passes: Example Data Passes

StatsPass

SpecDoc

* Walks the entire dependence graph
and collects data about the
connectivity of the graph and
incidence of the nodes

* Reports the number of adjacent
dependent nodes for each node in the
graph (outdegree)

e Reports final counts of the incidence
of each node type

* Walks the entire dependence graph
and collects data about the encoding
infrastructure of the ISA and portions
of the micro architecture

e Outputs a specification document in
LaTeX that details each of:
* Register Classes
* Register Encodings

* Subregister encodings (bit fields within
register)

* |nstruction Formats
* Instruction Encodings
e Master instruction table

CoreGen IR Passes: Example System Passes

SafeDeletePass ASPSolverPass
* Determines whether removing a * Utilized when an existing analysis
node from the graph is safe pass does not find a specific corner
case

* For example:) . i
* ”If | remove this register, will | break * Can be used to “programmatically

the dependence graph?” define new dependence solvers
* “If | remove this encoding format, will using a specific syntax
| break the dependence graph?” « Can be utilized as design
* Generally utilized within other constraints and/or regression tests
tooling, but can be utilized directly to ensure specific
by the user functionality/connectivity exists in
a design

'/J’ enoOo

K

(' » & ' |
<K \ bt
Y / (G |56

CoreGen Infrastructure

* All hardware modules/units are defined as DAG Cache Level

nodes

. Comm Channel
* Dependence graph between nodes is “lowered”

in multiple stages in order to expose increasing
levels of complexity

e Similar to Open64 notion of multi-dimensional IR

Core

Instruction
* DAG Levels:
* Level 0: Basic node connectivity Pseudolnst
e Level 1: Expands “extension” nodes to contain all their
children Encoding
e Level 2: Expands all communication links
 Level 3: Expands all instruction and register encodings ISA

Tactical Computing Laboratories

Register Class

Register

SoC

Spads

VtoP

What type of nodes in the CoreGen IR?

* SoC Nodes: Defines a top-level system on chip (one per design)

* Core Nodes: Defines a single core with associated ISA and dependent
nodes

* |SA Nodes: Defines an instruction set architecture container

* Instruction Format Nodes: Defines an instruction format with all of its sub-
fields

» Sub-fields have properties that define encoding fields, register fields, immediate
value fields, etc

* Instruction Nodes: Defines a single instruction based upon a prescribed
instruction format.

* Ability to define encodings, register classes for register fields, immediate values, etc

Open>d

>a

_) ,/V"‘*z 1T //“ff l'(;;’.f

What type of nodes in the CoreGen IR (cont)?

* Pseudo Instruction Nodes: Defines specific encodings for existing
Instructions

 Ability to define prescribed encoding fields as static (eg, immediate = 0x00)
 DOES NOT induce instruction encoding collisions
* EG: ”MOV RT, Ra” = “ADD RT, Ra, S0O”

* Register Class Nodes: Defines a container node with multiple dependent
registers. Register indices within a register class cannot overlap

* Register Nodes: Defines a single register node with an index, bit width,
sub-register fields and attributes (RO, RW, etc)

* Encoding Nodes: Define encodings for parent nodes (EG, register

encodings)
* Cache Nodes: Defines a single cache layer
* Can be interconnected into multi-level caches Opend

What type of nodes in the CoreGen IR (cont)?

. Cornmunication Channel Nodes: Interconnect multiple nodes via on-chip data+control
paths

* Multiple topologies supported
e Scratchpad Nodes: Represent addressable on-chip scratchpads

« Memory Controller Nodes: Represents a basic memory controller with multiple
input/output ports

 Virtual to Physical Nodes: Handles virtual to physical memory translation

« **Extension Nodes: Special node type that permits users to “import” other CoreGen-
developed project artifacts into other projects

* Accelerators are excellent examples of extensions

» **Plugin Nodes: Special node type that represents a third-party templated design
* Can contain unlimited number of special properties (not defined by standard CoreGen IR spec)
* May also contain custom code generation facilities to output any style of HDL/RTL, etc

_) ,/V"‘*z 1T //“ff l'(;;’.f

CoreGen Plugins

. . [System Architect Project
* CoreGen plugins are containers for self-

contained extensions 4 > _/I I_

e Each plugin is effectively its own template L Plugin } [Plugin }

* Bundled as a shared library (can be licensed and
distributed outside of System Architect)

 These can be:

e Cores, ISAs, cache modules, periphery components,
etc

e Each plugin can drive unique “code generators’
to modify their internal HDL state and/or
generate the source compiler

* Projects can import any number of plugins
* DAG analysis works across plugins OperSC

Tactical Computing Laboratories S AN&(’

)

CoreGen IR Specification

* IR Spec is governed in the same manner as source code development
* Changes to the spec must be received in the form of pull requests on Github

* Adjacent pull requests (that include all the necessary tests) must also exist in
CoreGen library tree

* NO changes to the spec are accepted without support in CoreGen
* Entire IR spec is documented with examples

e Latest revision:
* http://www.systemarchitect.tech/index.php/coregenirspec/

Tactical Computing Laboratories ; h

http://www.systemarchitect.tech/index.php/coregenirspec/

What now?

* Level 1 Tutorial: Describes basic design concepts and walks through the
initial definition of a RISC-like design

* Level 2 Tutorial: Implementing individual instructions using the
StoneCutter language and compiler

e Extends the design from Level 1

 Level 3 Tutorial: Advanced design and implementation concepts
e Extends the work done in Level 2

* Level 4 Tutorial: Building external plugins and integrating external RTL

* How do we integrate existing IP? Opend

Sa

What do you need to continue?

* Linux/OSX system with the tools installed
* Prebuilt packages are available:
* https://github.com/opensocsysarch/SystemArchitectRelease

* Text editor
* VIM, Emacs, Notepad, etc

* For those seeking to use the GUI
* Graphics environment (X11, OSX, etc)

* Basic knowledge of computer architecture
 Basic knowledge of software architecture

Tactical Computing Laboratories

(Ope S

i) /‘T/H\ /—\ru w=ea

https://github.com/opensocsysarch/SystemArchitectRelease

References

Where do | find more info?

Tactical Computing Laboratories

Web Links

e System Architect Public Web
e http://www.systemarchitect.tech/

e Documentation

 Latest IR Specification:
* http://www.systemarchitect.tech/index.php/coregenirspec/

e Tutorials
* http://www.systemarchitect.tech/index.php/tutorials/
e https://github.com/opensocsysarch/CoreGenTutorials
ps://g /op y / OperSeC

Tactical Computing Laboratories S ANN

http://www.systemarchitect.tech/
http://www.systemarchitect.tech/index.php/coregenirspec/
http://www.systemarchitect.tech/index.php/tutorials/
https://github.com/opensocsysarch/CoreGenTutorials

Source Code

e Main source code hosted on Github:
* https://github.com/opensocsysarch

e CoreGen Infrastructure
* https://github.com/opensocsysarch/CoreGen

e CoreGenPortal GUI
e https://github.com/opensocsysarch/CoreGenPortal

* CoreGen IR Spec
e https://github.com/opensocsysarch/CoreGenlRSpec

e System Architect Weekly Development Releases
e https://github.com/opensocsysarch/SystemArchitectRelease

Tactical Computing Laboratories

OperSC
wﬁm

https://github.com/opensocsysarch
https://github.com/opensocsysarch/CoreGen
https://github.com/opensocsysarch/CoreGenPortal
https://github.com/opensocsysarch/CoreGenIRSpec
https://github.com/opensocsysarch/SystemArchitectRelease

Contact

* Issues should be submitted through the respective Github issues
pages (see source code links)

* Mailing Lists:
* http://www.systemarchitect.tech/index.php/lists/

* Direct developer contacts
* John Leidel: jleidel<at>tactcomplabs<dot>com
* Frank Conlon: fconlon<at>tactcomplabs<dot>com .
(O)pen

Tactical Computing Laboratories h

i) «./_jer“r"i A(U‘l‘%@

http://www.systemarchitect.tech/index.php/lists/

