Design Concepts with System
Architect: Level O

John Leidel
Chief Scientist, Tactical Computing Laboratories
ver 2019.06.12

Tactical Computing Laboratories

Tutorial Series

* Level O: Introduction to System Architect

e Level 1: System Architect Design Concepts and Developing a basic RISC
processor

* Level 2: Instruction-Level (StoneCutter) Implementation Concepts
* Level 3: Advanced Design Concepts
* Level 4: System Architect Plugins and Integrating External RTL OpenSeC

C\ctorm / f'
Sysem /—\IUT@J

System Architect Overview

Modular, High-Level Design Concepts

Tactical Computing Laboratories

What is System Architect?

* A family of tools, APls and associated infrastructure to permit users to
rapidly develop multi-faceted hardware

 Utilizes a combination of modular hardware design reuse principles,
object oriented development and dependence analysis techniques
(compiler theory) to provide an infrastructure for:
* Design & Design Experimentation
* High Level Verification

* The artifacts generated by a System Architect design flow include:
e Chisel HDL and Verilog RTL
e C++ cycle-based simulator
* LLVM compiler OerSC

Tactical Computing Laboratories h

Gysem Archied

What is System Architect NOT?

* System Architect is not the latest C-to-gates tool
* It permits rapid design, verification and reuse
* |t does not auto-generate hardware based upon application code

» System Architect still relies upon the user to utilize reasonable design
concepts

e System Architect will not auto-generate optimized designs based upon unreasonable
inputs

* Users need to have a concept of the physical platform (FPGA, ASIC, etc)

» System Architect does not currently have a notion of physical layout

* The generated output will not include LUT counts, physical design dimensions or
power estimates

» External FPGA/ASIC tools are required for this level of detail

System Architect Design Flow

: =TT T T 1

The user inputs their The user then executes verification Th.e. useran npw optionally | Verilog Ol_Jt_pUt i
design using the GUI or passes against the design in order utilize the Chisel _HDL to | can be utilized !
text editor. This to ensure the design is correct and generate th_e Verilog | for dowr\stream |
includes the design optimal. Users have the option of representation and the C++ | synthesis and |
parameters and logic for executing special passes to 5|muI§tor. The LLV!V_I :_l_a}'(zlit_toi)l_s____J
each instruction generate design documentation co‘mp|l.er can be utilized to i

: ‘ drive binary payloads for 1

i The design input ! the C++ simulator Y

| is stored in the | ;

i CoreGen i The user gxecutes the 3 Verilog

i intermediate 5 codegen in orde.r to 3

| representation | generate the Chisel HDL v

! (IR) | and/or the LLVM compiler

3 3 i for the target design Chisel HDL

v v v v

. o e . . C++
DesignInput = IR = Verification 2 Code Generation :
Simulator
A
e L LLVM Compiler N oG
e ()penad.

. S
User

C\ctorm / f'
Sysem /—\IUT@J

Typical System Architect Design Flows

Rapid ISA Development

Modular Design

Compiler Environment

e Rapid development of
ISA’s with backend RTL
and LLVM compiler as
artifacts

* Cycle-based simulator
that supports
immediate
experimentation

* Rapid design evaluation
and prototyping

* High level verification of
design before synthesis

* Multi-module
design and
integration

* Integration with
other System
Architect designs
(sub-designs)

e External module
integration

* Plugin support for
custom-modularity

* Auto-generated LLVM
compiler infrastructure
from design parameters

* Modern C/C++ frontend
support

e Other frontends can be
supported as well

e Re-useable as LLVM
mainline continues to
develop

* Re-spinning entire
compiler based on new

LLVM versions is
automated

SYs

()pensde

/

r A\raved

System Architect Infrastructure

User Interfaces

Backend Infrastructure

Tactical Computing Laboratories

How does it work?

We input designs in the user-facing tools and generate
CoreGen Intermediate Representation (IR)

The IR preserves the natural dependencies within the design
* Register classes depend upon registers
* Instruction formats depend upon register classes
* Instruction sets depend upon instructions
* Cores require instruction sets

We execute high level verification “passes” against the IR
* Similar in design to traditional compiler passes

* Walks the IR dependence graph and derives properties of the
design

* Reports issues in the design infrastructure, outputs interesting
data or optimizes the design infrastructure

Users implement instructions in StoneCutter instruction
implementation language
* C-like integrated with CoreGen IR to define a single instruction
* Optimized by a traditional compiler flow to generate Chisel HDL
for a single instruction

Following the high level verification phase, we execute
generate downstream code (code generation)

* Generates Chisel HDL
e Compiled down to Verilog & C++ cycle-based simulator
* Generates LLVM compiler for the target design

Example
dependence
graph from
CoreGen
design input

CoreGen IR Passes

* Passes can be selectively enabled or disabled by the
user (just like a normal compiler)

* Four types of passes
* Analysis
* Analyze the connectivity and the structure of the graph

Reports back the identified state to the user
DOES NOT modify the graph (IR is unchanged)

* Optimization
Optimizes connectivity and structure of the graph
Much like Kennedy/Callahan dependence analysis/optimization
MODIFIES the dependence graph (IR is changed)

* Data

Generates statistical data/output based upon the
structure/content of the graph

EG, outputs a LaTeX specification document based upon the
respective ISA

DOES NOT modify the graph (IR is unchanged)

* System
Mixtures of each of the aforementioned pass types
Must be manually instantiated by the tools/users

* The internal representation of the
IR is stored as a directed acyclic
graph (DAG)

e Contains four levels that describe
varying levels of detail
* This is a performance optimization

e Each subsequent level is a superset
of the previous level

e LevelN*1 2 LevelV

(J pm L

C\ctorm / f'
Sysem /—\IUT@J

CoreGen IR Passes: Example Analysis Passes

RegSafetyPass/RegldxPass

EncodingCollisionPass

* Find inconsistencies between registers
within the same register file

* Multiple registers with the same index
* Registers with missing indicies

* Registers with prescribed values >
than their bit width

e Sub-register fields with overlapping
names

e Sub-register fields with overlapping
bit field definitions

|dentifies potential ISA encoding
issues

Utilizes all instruction formats within
an ISA

Builds a table of every known
instruction within the ISA

* Initializes a bit vector for every
instruction using the encoding (eg,
opcode), immediate values and register
fields (bitmask)

Examines collisions in the “loaded”
encodings

(Open S

S

/

DYSEM Araed

CoreGen IR Passes: Example Data Passes

StatsPass SpecDoc
* Walks the entire dependence graph * Walks the entire dependence graph
and collects data about the and collects data about the encoding
connectivity of the graph and infrastructure of the ISA and portions
incidence of the nodes of the micro architecture
* Reports the number of adjacent e Outputs a specification document in
dependent nodes for each node in the LaTeX that details each of:
graph (outdegree) Register Classes
* Reports final counts of the incidence * Register Encodings
of each node type * Subregister encodings (bit fields within
register)
* |nstruction Formats
* Instruction Encodings
* Master instruction table OpenSoC

/

DYsem A raed

CoreGen IR Passes: Example System Passes

SafeDeletePass

ASPSolverPass

* Determines whether removing a
node from the graph is safe

* For example:

* ”If | remove this register, will | break
the dependence graph?”

* “If | remove this encoding format, will
| break the dependence graph?”

* Generally utilized within other
tooling, but can be utilized directly
by the user

* Utilized when an existing analysis
pass does not find a specific corner
case

* Can be used to “programmatically”
define new dependence solvers
using a specific syntax

* Can be utilized as design
constraints and/or regression tests
to ensure specific
functionality/connectivity exists in
a design

@)

eNnoC_

N

/

Skem A raved

CoreGen Infrastructure

* All hardware modules/units are defined as DAG Cache Level

nodes

. Comm Channel
* Dependence graph between nodes is “lowered”

in multiple stages in order to expose increasing
levels of complexity

e Similar to Open64 notion of multi-dimensional IR

Core

Instruction
* DAG Levels:
* Level 0: Basic node connectivity Pseudolnst
e Level 1: Expands “extension” nodes to contain all their
children Encoding
e Level 2: Expands all communication links
 Level 3: Expands all instruction and register encodings ISA

Tactical Computing Laboratories

Register Class

Register

SoC

Spads

VtoP

What type of nodes in the CoreGen IR?

* SoC Nodes: Defines a top-level system on chip (one per design)

* Core Nodes: Defines a single core with associated ISA and dependent
nodes

* |SA Nodes: Defines an instruction set architecture container

* Instruction Format Nodes: Defines an instruction format with all of its sub-
fields

» Sub-fields have properties that define encoding fields, register fields, immediate
value fields, etc

* Instruction Nodes: Defines a single instruction based upon a prescribed
instruction format.

 Ability to define encodings, register classes for register fields, immediate values, etc(_} .
e »o

C o /\ o | | .}
DYsemM A raniec

What type of nodes in the CoreGen IR (cont)?

* Pseudo Instruction Nodes: Defines specific encodings for existing
Instructions

 Ability to define prescribed encoding fields as static (eg, immediate = 0x00)
 DOES NOT induce instruction encoding collisions
* EG: ”MOV RT, Ra” = “ADD RT, Ra, S0O”

* Register Class Nodes: Defines a container node with multiple dependent
registers. Register indices within a register class cannot overlap

* Register Nodes: Defines a single register node with an index, bit width,
sub-register fields and attributes (RO, RW, etc)

* Encoding Nodes: Define encodings for parent nodes (EG, register
encodings)

* Cache Nodes: Defines a single cache layer

* Can be interconnected into multi-level caches Opens

What type of nodes in the CoreGen IR (cont)?

. Cornmunication Channel Nodes: Interconnect multiple nodes via on-chip data+control
paths

* Multiple topologies supported
e Scratchpad Nodes: Represent addressable on-chip scratchpads

« Memory Controller Nodes: Represents a basic memory controller with multiple
input/output ports

 Virtual to Physical Nodes: Handles virtual to physical memory translation

« **Extension Nodes: Special node type that permits users to “import” other CoreGen-
developed project artifacts into other projects

* Accelerators are excellent examples of extensions

» **Plugin Nodes: Special node type that represents a third-party templated design
* Can contain unlimited number of special properties (not defined by standard CoreGen IR spec)
* May also contain custom code generation facilities to output any style of HDL/RTL, etc

(J per S

C \orm / ,.". g |
DYsemM A rchiec

CoreGen Plugins

. . [System Architect Project
* CoreGen plugins are containers for self-

contained extensions 4 > _/I I_

e Each plugin is effectively its own template L Plugin } [Plugin }

* Bundled as a shared library (can be licensed and
distributed outside of System Architect)

 These can be:

e Cores, ISAs, cache modules, periphery components,
etc

e Each plugin can drive unique “code generators’
to modify their internal HDL state and/or
generate the source compiler

* Projects can import any number of plugins
* DAG analysis works across plugins OperSeC

Tactical Computing Laboratories S %

)

CoreGen IR Specification

* IR Spec is governed in the same manner as source code development
* Changes to the spec must be received in the form of pull requests on Github

* Adjacent pull requests (that include all the necessary tests) must also exist in
CoreGen library tree

* NO changes to the spec are accepted without support in CoreGen
* Entire IR spec is documented with examples

* Latest revision:
* http://www.systemarchitect.tech/index.php/coregenirspec/ |
(OpenSC

Tactical Computing Laboratories A

Sysern Archied

http://www.systemarchitect.tech/index.php/coregenirspec/

What is StoneCutter?

* StoneCutter is a high level language designed to describe the implementation of a
single instruction

» Traditional “C-to-gates” languages/tools were suboptimal given the very large design space
* Each instruction is written as a single “function”

* StoneCutter’s syntax is loosely based upon “C”. Support for:
All rudimentary data types

Arbitrary bit width data types

All standard arithmetic operations (+,-,*,/,%,", | ,<<,>>)

All standard logical operators

Loops (for, while, do-while)

Flow control (if/else)

e StoneCutter can be written inline within the CoreGen YAML IR
* The compiled output is Chisel HDL!

(J [‘}r L

C\ctorm / f'
Sysem /—\IUT@J

StoneCutter Tooling

* StoneCutter is compiled, not interpreted or
simply translated

e StoneCutter compiler is based upon LLVM
* Makes heavy use of many traditional LLVM safety
and optimization passes

* Traditional LLVM compiler passes are
augmented with a number of StoneCutter-
specific passes

Tactical Computing Laboratories

-
M

https://llvm.org/Logo.html

https://llvm.org/Logo.html

StoneCutter Passes

* FieldlO

e Ensures that read-only fields from an
instruction payload are not
erroneously written to

* InstArg

* Ensures instructions are properly
using registers as instruction inputs
and outputs

* InstFormat

* Ensures instruction fields are properly

used as arguments to operations

* |[OWarn

 Warns the user if the instruction
utilizes a register that is outside the
normal data path for the respective
instruction format

 SigMap

e Performs global ISA optimization and
derives the entire set of signals
required as well as the per-instruction
signals

e PipeBuilder

e Constructs inline pipelines of
operations

(J per S

C \orm / ,.". g |
DYsemM A rchiec

Sample StoneCutter Source

instformat Arith.if(reg[GPR] ra,reg[GPR] rb,reg[GPR] rt,enc opc,
enc func,imm imm)

Register Class Definitions

regclass GPR(u64 r0, u64 rl1, u64 r2, ub4 r3, ub4 rd, uba r5, ubd r6, ubs r7, ubd r8, usd r9, ub4 ri10, ubd rii,
u6d r12, ubd ri13, ué4d r14, ub4 r15, ubd r16, ued r17, ubd ri18, ued r19, ubd r20, ued r21, ubd r22, ubs r23,
u6b4 r24, ub4 r25, ubd r26, ub4 r27, ubd r28, ub4 r29, ued r30, ub4 r31)

Instruction Definitions
def add:Arith.if(rarb rt imm)

{

rt=ra+rb

}

def sub:Arith.if(ra rb rt imm)

{
rt=ra-rb o

}

Tactical Computing Laboratories ﬂ

Gysern Archied

StoneCutter Language Specification

e Language spec is governed in the same manner as source code
development

* Changes to the spec must be received in the form of pull requests on Github

* Adjacent pull requests (that include all the necessary tests) must also exist in
StoneCutter (CoreGen) library tree

* NO changes to the spec are accepted without support in compiler
* Entire language spec is documented with examples

e Latest revision:
e http://www.systemarchitect.tech/index.php/stonecutter-language-spec/ OperSeC
FZIT“

Tactical Computing Laboratories A

Gysem Archied

http://www.systemarchitect.tech/index.php/stonecutter-language-spec/

What now?

* Level 1 Tutorial: Describes basic design concepts and walks through the
initial definition of a RISC-like design

* Level 2 Tutorial: Implementing individual instructions using the
StoneCutter language and compiler

e Extends the design from Level 1

 Level 3 Tutorial: Advanced design and implementation concepts
e Extends the work done in Level 2

* Level 4 Tutorial: Building external plugins and integrating external RTL
* How do we integrate existing IP?

What do you need to continue?

* Linux/OSX system with the tools installed
* Prebuilt packages are available:
* https://github.com/opensocsysarch/SystemArchitectRelease

* Text editor
* VIM, Emacs, Notepad, etc

* For those seeking to use the GUI
* Graphics environment (X11, OSX, etc)

* Basic knowledge of computer architecture
 Basic knowledge of software architecture

Tactical Computing Laboratories

O pen;OC

Gysem Archied

https://github.com/opensocsysarch/SystemArchitectRelease

References

Where do | find more info?

Tactical Computing Laboratories

Web Links

e System Architect Public Web
e http://www.systemarchitect.tech/

e Documentation

 Latest IR Specification:
* http://www.systemarchitect.tech/index.php/coregenirspec/

e Tutorials
* http://www.systemarchitect.tech/index.php/tutorials/
e https://github.com/opensocsysarch/CoreGenTutorials
ps://g /op y / OperSeC

Tactical Computing Laboratories S A/Awk

http://www.systemarchitect.tech/
http://www.systemarchitect.tech/index.php/coregenirspec/
http://www.systemarchitect.tech/index.php/tutorials/
https://github.com/opensocsysarch/CoreGenTutorials

Source Code

e Main source code hosted on Github:
* https://github.com/opensocsysarch

e CoreGen Infrastructure
* https://github.com/opensocsysarch/CoreGen

e CoreGenPortal GUI
e https://github.com/opensocsysarch/CoreGenPortal

* CoreGen IR Spec
e https://github.com/opensocsysarch/CoreGenlRSpec

e System Architect Weekly Development Releases
e https://github.com/opensocsysarch/SystemArchitectRelease

Tactical Computing Laboratories

OpenSC

https://github.com/opensocsysarch
https://github.com/opensocsysarch/CoreGen
https://github.com/opensocsysarch/CoreGenPortal
https://github.com/opensocsysarch/CoreGenIRSpec
https://github.com/opensocsysarch/SystemArchitectRelease

Contact

* Issues should be submitted through the respective Github issues
pages (see source code links)

* Mailing Lists:
* http://www.systemarchitect.tech/index.php/lists/

* Direct developer contacts
* John Leidel: jleidel<at>tactcomplabs<dot>com
* Frank Conlon: fconlon<at>tactcomplabs<dot>com -
(OpenSC

Tactical Computing Laboratories A

S\ﬁi?m /—\r& Vet

http://www.systemarchitect.tech/index.php/lists/

