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1 Overview

The StoneCutter language is utilized to develop the implementation of a single instruction within the System
Architect design workflow. The StoneCutter language abstracts a large portion of traditional high level design
languages such that the user may focus on the implementation details of a single instruction rather than
the connectivity to the remainder of the infrastructure. The core features of the StoneCutter language
infrastructure are noted as follows:

e Compiled Language: Unlike other HDL approaches, the StoneCutter language is, in fact, compiled.
The core StoneCutter compiler infrastructure makes use of the LLVM compiler infrastructure for lexing,
parsing, optimization and code generation. As a result, we have the ability to initiate traditional
optimizing compiler passes, syntax tests and lexical analysis as other compiled languages. Further, we
have the ability to craft tooling that integrates with the StoneCutter language in the same manner as
traditional compiled languages.

e Integration with CoreGen IR: The StoneCutter language and associated tooling is architected in a
manner that permits integration with the CoreGen intermediate representation (IR) [1]. This is done
in two ways. First, users have the ability to write StoneCutter instruction definitions inline within the
CoreGen IR. These Impl definitions are directly embedded within the overarching design. Second, the
CoreGen IR can be utilized to verify the I/O architecture and instruction format for each StoneCutter
instruction definition. This ensures that the prescribed instruction format in the CoreGen design is
verified to be functionally correct prior to utilizing downstream synthesis tools.

e C-Like Syntax: Unlike other HDL approaches, the StoneCutter language utilizes a familiar syntactical
structure that is designed to mimic traditional C procedural methods. Each instruction definition is
contained within an effective function body with incoming arguments (registers). Arithmetic, boolean
operations, conditional operations and loop structures all mimic traditional procedural C syntax. In
this manner, the learning curve required to be productive with StoneCutter is minimized.

e Support for Intrinsics: Much in the same manner as traditional procedural languages such as C,
StoneCutter has support for inline intrinsic operations. Intrinsic operations are designed to support
optimized circuits for pathological operations such as sign/zero extension, multi-input operations (ma-
jority vote, etc) and special arithmetic operations. As the StoneCutter language continues to develop,
we plan to augment the list of supported intrinsics.

The remainder of this language specification is organized as follows. Section 2 introduces the StoneCutter
language and the associated syntax. Section 3 provides details associated with each of the currently supported
intrinsics. Section 4 provides a sample set of StoneCutter instruction definitions. Section 5 provides a
consolidated list of StoneCutter intrinsics.

StoneCutter Language Spec v.0.4 7
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2 StoneCutter Language

2.1 Overview

As mentioned above, the StoneCutter language is designed to take instruction definitions in a procedural
syntax, optimize the instruction body and output each instruction in Chisel HDL. As shown in Figure 1,
input files or buffers are parsed into an appropriate AST. Instruction intrinsics are recognized and annotated
in the AST. Further, register classes and registers are identified and marked as special globals. The AST
is then translated to standard LLVM intermediate representation (IR). The tools utilize standard LLVM
optimization passes to optimize the instruction IR. The tools then execute a series of StoneCutter-specific
IR passes against the optimized LLVM IR in order to ensure that the instruction design is correct per the
prescribed instruction format(s). Once verified as correct, the instruction intrinsics are expanded inline and
the tools generate Chisel HDL.

StoneCutter Intrinsics

L dlese  —sf SOPOOUNSr L_bjymiR | SIOMSCUNEr L0 Ghisel HDL

i

StoneCutter
CodeGen
Passes

Figure 1: StoneCutter Architecture

Each StoneCutter input file is constructed is a specific, prescribed manner. The organization of the data
members and the instruction definitions is done so specifically to elicit global and local hardware state within
and across individual instructions. We find a sample of the StoneCutter file layout in Listing 1. StoneCutter
input files begin with an optional comment block describing the contents of the file. Next, the individual
register classes are defining for use by the instructions. These register classes should match the register class
definitions in name and layout found in the respective CoreGen design input. Further information regarding
the definition of register classes can be found in Section 2.6. The next portion of the file includes the actual
instruction definitions. Each instruction definition is comprised of a function-like structure denoted with a
def keyword. Each instruction takes some number of instruction arguments (I/O’s) and contains private
variables and arithmetic logic. Notice how the variable definitions are made near the top of the instruction
definition. Much like the C language, this is required in StoneCutter in order to preemptively understand
the scope of the temporary variables defined in the instruction. Sections 2.7-2.11 describe the rudimentary
operations and the associated syntax that can be included in the instruction definition body.

StoneCutter Language Spec v.0.4 8
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#
# Sample StoneCutter File Layout

#

# Instruction Formats
instformat FORMATI1 ( FIELDTYPE FIELD1l, FIELDTYPE FIELD2, ... )

# Register Class Definitions

regclass CLASS1 ( DATATYPE REG1l, DATATYPE REG2, ... )

regclass CLASS2 ( DATATYPE REG3( DATATYPE SUBREG1l, DATATYPE SUBREG2 ) )
regclass CLASS3( DATATYPE REG4[PC], ... )

# Instruction Definitions

def INST1( INPUT1 INPUT2 INPUT3 ) {
# Variable Definitions
DATATYPE VAR1l, VAR2, VAR3
DATATYPE VAR4

# Instruction Body
VAR4 = INPUT2 + INPUT1
VARl = INPUT1 << 1
VAR2 = INPUT3 << 2
VAR3 = INPUT1 + INPUT2
INPUT1 = VAR3

def INST2( REGl1 REG3 SUBREG1 ) {
# Instruction Body
REG1 = REG3 * SUBREGI1

Listing 1: StoneCutter File Structure

2.2 Syntactical Notes

Prior to reading the remaining sections, we highly suggest users and readers understand the following syn-
tactical notes. Understanding these notes will significantly reduce the time required to become productive
in StoneCutter.

e Semicolons: Unlike the C language, StoneCutter does not require utilizing semicolons (; ) to terminate
an expression. All raw expressions are in static single assignment (SSA) form. This implies that each
expression will be in the form of TARGET = INPUT <OP> OUTPUT. The only exception to this rule
is when intrinsics are utilized. A call to an intrinsic function may be

e Complement Operations: The StoneCutter language contains all the standard arithmetic, boolean
and logical operations except complements. The bitwise complement operator from C (7) is not
supported and the boolean complement operator from C (!) is not supported. Complementing the
result of a boolean operation and/or performing the bitwise complement of a variable or register must
be performed using the NOT intrinsic. See Section 3.2.15 for more details.

StoneCutter Language Spec v.0.4 9
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2.3 Comments

Inline comments and comment text in StoneCutter must begin with the pound (#) sign. Comments may

begin on new lines on inline with other code. Examples of using comments are shown in Listing 2.

# This is a stand alone comment
def instO0(RA RB RT) { # this is an inline comment
RT = RA + RB

Listing 2: StoneCutter Comments

StoneCutter Language Spec v.0.4
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2.4 Datatypes

Much in the same manner as traditional programming models such as C and C++, StoneCutter supports a
common set of datatypes for intermediate variables and registers. However, unlike traditional programming
models, hardware design languages are required to support datatypes in non-byte aligned types. In order
to provide more hardware-centric support, StoneCutter supports traditional data types as well as arbitrary
width signed and unsigned integer types. These types are documented in Table 2.

Table 2: StoneCutter Datatypes

Type | Width (in bits) | Description
bool 1 Boolean. Analogous to unsigned 1 bit integer (ul)
us8 8 Unsigned 8 bit integer. Analogous to uint8_t
ulé6 16 Unsigned 16 bit integer. Analogous to uint16_t
u32 32 Unsigned 32 bit integer. Analogous to uint32_t
u64d 64 Unsigned 64 bit integer. Analogous to uint64_t
s8 8 Signed 8 bit integer. Analogous to int8_t
slé6 16 Signed 16 bit integer. Analogous to int16_t
s32 32 Signed 32 bit integer. Analogous to int32_t
s64 64 Signed 64 bit integer. Analogous to int64_t
float 32 Single precision floating point
double 64 Double precision floating point
uN N bits Arbitrary unsigned integer of N bits
sN N bits Arbitrary signed integer of N bits

An example of defining arbitrary width integers is shown in Listing 3.

#——- unsigned 7 bit integer "foo"
u7 foo

#-— unsigned 1024 integer "bar"
ul024 bar

#——- signed 37 integer "foobar"
s37 foobar

Listing 3: Arbitrary Width Datatypes

StoneCutter Language Spec v.0.4
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2.5 Instruction Format Definitions

Instruction formats and their associated fields are special variables in the StoneCutter language. Each
defined instruction field must reside within a respective instruction format. Instruction fields are marked
in the IR with attributes in order to ensure that they are correctly associated with the correct instruction
format. Further, for each field that is denoted as a register field, the associated register class must also
be specified in order to correctly link the register read datapath to the correct register file. Each of the
associated fields is annotated as a global variable such that is can be explicitly utilized in any instruction
prototype or instruction body.

Table 3: StoneCutter Instruction Format Field Types

Field Mnemonic Read/Write Access | Description
. . - I i i
Instruction Encodings enc Read-Only nstruction encodlpgs such as
opcodes and function codes
. imm Read-Only Immediate values encoded in the
Immediate Values . .
instruction payload
reg [REGCLASS] Read-Write Register index encodings.
Register Indices Must include the respective

REGCLASS

For each field in the instruction format, the respective field is designated with a field type and a field name.
There are three types of instruction field types. First, instruction fields denoted as encoding fields are utilized
to designate individual instruction encodings such as opcodes and function codes in RISC architectures.
When utilizing these fields in the implementation of an instruction, the value contained within the field is
utilized. For example, if an instruction defines a field opc that contains the values 0x0A hex, reading from
this field will provide the exact value 0x0A hex. Second, immediate fields are immediate values encoded
directly within the instruction payload. Reading from immediate fields from within the instruction payload
will read the literal immediate from the instruction payload. Finally, register fields denote register indices
that access a single register file. Reading from this field directly will not deliver the index. Rather, accessing
a register field will read or write the value at the designated index of the target register file. For fields that are
denoted as register class fields (reg), the associated register class (register file) must also be specified. We
summarize the permissible instruction field types in Table 3. Further, the syntax for the an entire instruction
format block is shown in Listing 4. Encoding and immediate fields are always marked as read-only. Only
register fields may be written to.

instformat FNamel ( FIELDTYPE FIELD1, FIELDTYPE FIELD2, ... )
instformat FName2 ( reg[REGCLASS] FIELD1l, ... )

Listing 4: Instruction Format Definition Syntax

We find an example instruction format definition for a simple RISC ISA with encodings for an opcode and
function code as well as three register fields in Listing 5.

instformat RISC( enc opc, enc func, reg[GPR] RT, reg[GPR] RA, reg[GPR] RB )

Listing 5: Sample Instruction Format Definition

StoneCutter Language Spec v.0.4 12
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2.6 Register Class Definitions

Register classes and their associated registers are special variables in the StoneCutter language. Each defined
register is must reside within its respective register class. Registers are marked in the IR with attributes
in order to ensure that they belong to the correct register class when being utilized in an instruction body.
Each register is also annotated as a global variable such that it can be explicitly utilized in any instruction
definition body.

regclass RCNamel ( DATATYPE RegNamel, DATATYPE RegName2, ... )
regclass RCName2Z ( DATATYPE RegName ( DATATYPE SubRegl, DATATYPE SubReg2 ) )
regclass RCName3 ( DATATYPE RegName[PC] )

Listing 6: Register Class Definition Syntax

We find the syntax for defining register classes and their associated registers in Listing 6. Each register class
is definition is marked with a regclass keyword followed by the register class name. Each of the registers
defined within the register class are enclosed within parenthesis. Within the parenthesis, each register
definition must be preceded by its respective datatype (Section 2.4) and the register name. Registers are
separated by commas. For registers that have subfields, we may also explicitly annotate these within the
register definition. For each register with subfields, the subfields are defined within parenthesis attached to
the register definition (Line 2 in Listing 6). Each subfield must also contain its respective datatype. The
combined number of bits for all subfields within a register definition must not exceed the total number of
bits in that register.

Individual registers may also have the ability to define specific attributes. Attributes are contained within
brackets immediately following the register name (REGNAME [ . . . ]). Currently, the only supported attribute
is the PC attribute. This attribute designates the target register as being enabled as the program counter
for the target ISA. The downstream result will be an automatic incrementing of the PC value for each
instruction execution. Note that there should be only one PC register defined for each instruction set.

We find an example register class definition for a simple RISC ISA in Listing 7.

regclass GPR( u64 r0O, u64 rl, u64 r2, u64 r3, u6d4 r4, u64 r5, u6b4 ro,
u64 r7, u6d r8, uo6d4d r9, uod rl0, uo6d4d rll, u6d rlz,
u64 r13, u6d rl4d, ued rl5, u6d rl6, u6d rl7, uocd rls,
u64 rl1l9, u64d r20, u6d r21, u6d r22, u6d r23, uocd ra4,
u6d r25, uo6d r26, u6d r27, ued r28, uod r29, u6d4d r30,
r6d r31 )

regclass CTRL( u64 pc[PC], ub4 exc, u64 ne, u64 gt, u64 1lt, u64d gte,

u6d4 lte, u64 sp, u64d fp, ucd rp )

Listing 7: Sample Register Class Definition

StoneCutter Language Spec v.0.4 13
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2.7 Instruction Prototypes

For each instruction defined in the StoneCutter syntax, we must construct an instruction prototype. The
instruction prototype is an important and powerful feature of the StoneCutter language. The instruction
prototype drives two major features in the downstream Chisel HDL produced by a compiled StoneCutter
input. First, the prototype describes the attachment of the respective instruction implementation to the
instruction crack logic generated by the CoreGen IR. The instruction mnemonic utilized in the instruction
definition must match that of the instruction mnemonic defined in the CoreGen IR. In this manner, the
combined StoneCutter and CoreGen IR infrastructure logic can match the instruction crack implementation
and the instruction implementation (et al. ALU). The instruction mnemonic may optionally define the
instruction format utilized to decode the target instruction using the : INSTFORMAT syntax immediately
following the instruction name. The INSTFORMAT name must match an instruction format as defined in
Section 2.5.

Second, the instruction definition argument list defines the set of standard I/O ports utilized by the instruc-
tion. Standard I/O ports are utilized to pipeline register read and write operations within an optimized
pipeline. While it is entirely permissible to directly address registers or register files from within an instruc-
tion definition that are not defined in the argument list, the eventual downstream instruction implementation
may require additional register read /write operations that induce pipeline stalls. Keep in mind that standard
I/0 ports such as the clock, register hazarding and stall signals are automatically instantiated.

def INSTNAME[:INSTFORMAT] ( ARGl ARG2 ARG3 ... ) {
}

Listing 8: Instruction Prototype Format

As mentioned above, the instruction prototype includes two main structures: the instruction name and
the instruction arguments (Listing 8). The instruction name must match the associated instruction name
defined in the CoreGen IR. The instruction name is case sensitive. See the CoreGen IR specification for
more information ??. The instruction argument list contains a set of register, instruction field or register
class names that define the standard I/O functions for the optimized pipeline. The instruction argument list
must match the set of register, instruction format fields or register file designators in the instruction format
for the target instruction.

Register arguments are interpreted literally. In this manner, a register I/O is performed to the specific
register index denoted by the target register. Register class arguments are interpreted logically. The register
class arguments utilize the index specified in the assembled instruction payload to load or store from the
respective register index in the target register file.

We see an example of a series of instruction prototypes in Listing 9. We utilize the register class and register
definitions from Section 2.6. We define four instructions, add, move, inc and sub. The add instruction
prototype contains a single argument, GPR, that defines I/O ports to/from the GPR register class. The move
instruction utilizes both the GPR and the CTRL register classes. The inc instruction utilizes the explicit pc
register as well as the GPR register class. Finally, the sub Notice that the arguments within the prototype
are not separated by commas. Further, we see that the associated instruction definition body is contained
within a set of brackets ({}).

StoneCutter Language Spec v.0.4 14
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instformat RISC( enc opc, enc func, reg[GPR] RT, reg[GPR] RA, reg[GPR] RB )
regclass GPR( u64 r0, u64 rl, u64 r2, u6d4 r3, u6d4 r4, u64 r5, u6b4 ro,
u64 r7, u6d r8, uocd r9, uod rl1l0, uod rll, u6d rl2,
u6d4 rl3, u64d rl4, u6d4 rl5, u64d rl6, u6d rl7, u6d rls,
u64 rl1l9, uo6d r20, ued r21, u6d r22, u6d r23, uocd r24,
uocd4d r25, uo6d4d r26, uo6d r27, uo6d r28, uod r29, uo6d r30,
ro4 r31 )
regclass CTRL( u64 pc, u64 exc, u64 ne, u64 gt, u64 1lt, u6d gte,
u64 lte, u64 sp, u64d fp, u64d rp )

# add operation
def add( GPR ) {
}

# move between GPR and CTRL
def move ( GPR CTRL ) {
}

# increment PC by GPR
def inc( pc GPR ) {
}

# subtract RT = RA — RB
def sub:RISC( RT RA RB ) {
}

Listing 9: Instruction Prototype Format

StoneCutter Language Spec v.0.4
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2.8 Variable Definitions

In addition to utilizing register classes and register fields as variables within an instruction definition, users
may also specify local, temporary variables in the instruction definition body. These values may be utilized
as temporary storage for complex, multi-stage operations, loop counters and other intermediate state. The
StoneCutter compiler infrastructure will make every effort to minimize the overall hardware impact of these
intermediate values to the size and timing of the target design. As a result, these temporary values may be
optimized out and/or reused by adjacent instructions in the generated downstream Chisel HDL.

In the same manner as individual registers, variables are required to have a defined type. These types follow
the same convention as defined in Section 2.4. Variable names may not collide with existing instruction
format fields or register names. Much in the same manner as the C language, StoneCutter permits users to
define multiple, independent variables using the same datatype. Variables must also be defined at the top
of an instruction definition. This permits StoneCutter to sufficiently scope temporary variables across the
body of an instruction. The format of variable definitions is noted in Listing 10. We provide an example of
a series of variable definitions in Listing 11.

def INST( ... ){
DATATYPE namel
DATARYPE name2 = VALUE
DATATYPE name3, name4,

<instruction body>

Listing 10: Variable Definitions

instformat RISC( enc opc, enc func, reg[GPR] RT, reg[GPR] RA, reg[GPR] RB )

def add( RT RA RB ) {
u64 varl, var2

if( RA == RB ) {
varl = 5
var2 = 6
}else(
varl = 7
var2 = 998

}

RT = varl & var?2

Listing 11: Sample Variable Definitions

StoneCutter Language Spec v.0.4 16
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2.9 Arithmetic Operations

The StoneCutter language supports the standard set of arithmetic operations as defined by other C-like
languages. However, given the nature of compiling the StoneCutter language to a target-specific circuit
design, the StoneCutter compiler and tool chain enforces a number of idiosyncratic features when processing
variables for arithmetic operations. First, the StoneCutter language scans the variables associated with the
left hand side of a target arithmetic operation and automatically converts the operation to perform arithmetic
using the width of the largest variable. Further, when storing the result of an operation to a target variable
or register (right hand side of an operation), StoneCutter converts the resulting data to saturate the bit
space of the target. The process of converting arithmetic operations and variables to larger bit space is
performed using zero extension in order to avoid poisoning the numerical consistency of an operation. Users

may override this behavior by utilizing sign and zero extended intrinsics (see Section 3.2).

We provide a summary of permissible arithmetic operations in Table 4.

Table 4: StoneCutter Arithmetic Operations

Operator Example Description
= RT = RB Assignment operation
+ RT = RA + RB | Add operation

RT = RA - RB

Subtract operation

* RT = RA x RB | Multiplication operation
\ RT = RA \ RB | Division operation

% RT = RA % RB | Modulo operation

& RT = RA & RB | Bitwise and operation

| RT = RA | RB | Bitwise or operation

A RT = RA A RB | Bitwise zor operation
<< RT = RA << RB | Shift left operation

>> RT = RA >> RB | Shift right operation

NOTE: Please note that StoneCutter does not currently support the bitwise complement operation (7) and

the logical not operation (!).

StoneCutter Language Spec v.0.4
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2.10 Conditional Operations

2.10.1 Boolean Operators

The StoneCutter language syntax supports the standard set of boolean operators as is defined by other C-like
languages. The one exception being the logical not operation (!). StoneCutter does not support the logical
not operation for boolean operations. Rather, users seeking to complement the result of a boolean operation
of a singular boolean value must utilize the NOT intrinsic (Section 3.2.15).

We provide a summary of permissible boolean operations in Table 5.

Table 5: StoneCutter Boolean Operations

Operator | Example | Description
== RA == RB | Logical equivalence
1= RA !'= RB | Logical in-equivalence
< RA < RB | Less than
> RA > RB | Greater than
<= RA <= RB | Less than or equal to
>= RA >= RB | Greater than or equal to
&& RA && RB | Logical and
| RA || RB | Logical or

StoneCutter Language Spec v.0.4
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2.10.2 Flow Control

The StoneCutter language provides support for C-like conditional flow control using standard if-else clauses.
The statements contained within these clauses must result in a boolean value that is interrogated in order to
determine which body of code (circuit) to execute. Flow control operations are required to include a single
if statement. They may optionally include a complementary else statement.

© 00 O Uik W

if ( BOOLEAN OPERATION) {
# Conditional body

if ( BOOLEAN OPERATION) {

# Conditional if body
lelse(

# Conditional else body

Listing 12: Flow Control Syntax

We provide a set of example conditional flow control operations in Listing 13.

— O © 00O Utk W~

—_ =

def add( RT RA RB ) {
if( RA > RB ) {
RB = RA + RB

if( RB < RT ) {
RT = RB
}else(
RT = RT << 1

Listing 13: Sample If-Else Syntax

StoneCutter Language Spec v.0.4 19




N O O W N

© 00 O U Wi

StoneCutter Language Spec v.0.4

2.11 Loop Operations
2.11.1 For Loops

The first style of loop statement supported by the StoneCutter language is the for loop. The StoneCutter
for loop is structured in a similar manner as the traditional C for loop. The loop is provided with a base
case loop counter, a loop termination statement and an optional iterator trip step. The loop counter can
be an existing variable or a newly defined temporary variable. Unlike other temporary variables, loop trip
counters can be defined inline within the for loop structure. The loop termination statement includes one
or more comparison statements that define the termination state of the loop using the loop trip counter.
The optional loop trip counter iterator can be an immediate value or a variable. If this optional value is not
specified, the iterator value is assumed to be ”71”. The for loop body is contained with brackets ({}) and
may include any other set of StoneCutter statements. The for loop syntax is depicted in Listing 14.

for ( LOOPTRIP = BASE; LOOPTRIP <COMPARATOR> TERMINATOR ) {
# for loop body

for ( LOOPTRIP = BASE; LOOPTRIP <COMPARATOR> TERMINATOR; ITERATOR ) {
# for loop body

Listing 14: For Loop Syntax

The comparator operation utilized to terminate the loop is one of the standard variable comparison operations
from C-like languages. We summarize these operators in Table 6.

Table 6: StoneCutter Comparison Operations

Operator | Description
< Less Than
> Greater Than
<= Less Than Or Equal To
>= Greater Than Or Equal To
== Equal To
1= Not Equal To

We provide a set of example for loops in Listing 15.

def add( RT RA RB ) {

u6d varl

for( i = 1; i < RA ){
RB = RB + 1

}

for( j = 0; i< RB; 5 )
RT = RB | RT

}

for( var = 1024; i1 <= RT; RB ) {
RT = var

Listing 15: Sample For Loop Syntax
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2.11.2 While Loops

The second style of loop supported by the StoneCutter language is the while loop. The StoneCutter while
loop is structured in a similar manner as the traditional C while loop. The loop is provided with a termination
statement in the form of a comparator. It is up to the user to modify the variable utilized in the comparator
statement such that a valid termination state can be reached. StoneCutter does not otherwise validate the
potential for infinite while loops. The while loop body is contained within brackets ({}) and may include
any other set of StoneCutter statements. The while loop syntax is depicted in Listing 16.

[\

while ( COMPARATOR STATEMENT ) {
# while loop body

Listing 16: While Loop Syntax

We provide a set of example while loops in Listing 17.

— O © 00O ULk Wi -

—_ =

def add( RT RA RB ) {
u6d4d varl = 1024
while( RA < RB ) {
RT = RB << 1
RA = RA + 1

while( varl >= RT ) {
varl = varl - 5
RT = RT << 1

Listing 17: Sample While Loop Syntax
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2.11.3 Do While Loops

The final style of loop supported by the StoneCutter language is the do while loop. The StoneCutter do
while loop is structured in a similar manner as the traditional the traditional C do while loop. The loop
is provided with an entry state provided by a do statement. The do statement is followed by a loop body
contained within brackets ({}). The do while loop termination statement follows the last bracket and is
contained in a while block similar in form as the while loop structure (Section 2.11.2). The while loop syntax
is depicted in Listing 18.

[\

do{
# do while loop body
}while ( COMPARATOR STATEMENT )

Listing 18: Do While Loop Syntax

We provide a set of example do while loops in Listing 19.

— O © 00O ULk Wi -

—_ =

def add( RT RA RB ) {

u6d4d varl = 1024
do{

RT RB << 1

RA = RA + 1
}while( RA < RB )
do{

varl = varl - 5

RT = RT << 1
}while( varl >= RT )

Listing 19: Sample Do While Loop Syntax
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3 Intrinsic Functions

3.1 Overview

In the same manner as other C-like languages and compiler infrastructures, the StoneCutter language pro-
vides a notional set of builtin intrinsic functions. Much like other languages, these intrinsic functions provide
pathological circuit functionality in a convenient and optimized package. However, unlike traditional strongly
typed languages that provide unique intrinsic functions for disparate data types, the StoneCutter language
provides single intrinsics that support all possible StoneCutter data types. In this manner, the StoneCutter
compiler infrastructure interrogates the arguments of each intrinsic at compile time and constructs an op-
timized Chisel representation of the target operation using the user-specified types. As a result, users may
utilize the forthcoming set of intrinsic operations with any target data types supported by the StoneCutter
language.

StoneCutter intrinsics are classified as two disparate types: Arithmetic intrinsics and Memory intrinsics.
Arithmetic intrinsics perform some notional permutation on the target input data. Arithmetic intrinsics
generally require input and return the output as a unique data member (OUTPUT = INTRINSIC( INPUT
) ). Data members are not modified in place. Memory intrinsics are different in that they interact with the
memory infrastructure generated by the CoreGen [1] code generation facilities such that the desired function
unit may interact with external memories such as caches and off-chip memory units. Memory intrinsics are
generally provide functionality such as load and store operations.

StoneCutter intrinsic operations may be utilized anywhere within the body of an instruction definition.
The initial StoneCutter language parser lowers any encountered intrinsic operations to the equivalent of a
function call. The StoneCutter code generator expands these intrinsic function calls into their full circuit
descriptions using the target input and output types. In this manner, including intrinsics within the body
of conditional flow control, loops and other basic blocks is both type safe and functionally sound.

Intrinsics can be utilized similar to C-style function calls. Intrinsics names are placed in the instruction
body with the appropriate number of arguments. Intrinsic arguments are separated by commas. Intrinsics
that return values can be utilized within other expressions and/or assigned to values (RT = INTRIN(..)).
The syntax for utilizing intrinsics is depicted in Listing 20. A summary of the intrinsics is provided in
Section 5.

def add( RT RA RB ) {
u64 varl, var2
INTRIN( RB )
RB = INTRIN( RA )
RT = INTRIN( RA, RB )

Listing 20: Intrinsic Syntax
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3.2 Arithmetic Intrinsics

3.2.1 BSEL

Table 7: BSEL Intrinsic

Mnemonic | RT = BSEL (RA,RB, RC)
Description | Bit field select of bits (RB—RC) from value RA
RA: Contains the value to select from
Areuments RB: Contains the starting bit
& RC: Contains the ending bit
def INST(RA RB RC RT){
Example | RT = BSEL(RA,RB,RC)
}
Return The value of the selected field in the desired width

StoneCutter Language Spec v.0.4
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3.2.2 CLZ

Table 8: CLZ Intrinsic

Mnemonic | RT = CLZ (RA)

Description | Counts the leading zeros (little endian)

RA: Contains the value to count the leading zeros
Arguments

def INST(RA RB RT){
Example RT = CLZ(RA)

Return The number of leading zeros in the input value

StoneCutter Language Spec v.0.4
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3.2.3 COMPRESS

Table 9: COMPRESS Intrinsic

Mnemonic | RT = COMPRESS (RA)
Description Bit compression. For the number of ’1’ values in RA, set the least significant
p bits to '1’. Zero extend the result.
RA: Contains the value to compress
Arguments
def INST(RA RB RT){
Example RT = COMPRESS(RA)
}
Return The compressed version of RA

StoneCutter Language Spec v.0.4

26



StoneCutter Language Spec v.0.4

3.2.4 COMPRESSM

Table 10: COMPRESSM Intrinsic

Mnemonic | RT = COMPRESSM (RA, RB)
Bit compression under mask. Perform a bitwise ‘&* operation of the input and bitmask.
Description | For the number of ’1’ values in the result, set the least significant
bits to ’1’. Zero extend the result.
Arguments RA: Contains the value to compress
RB: Contains the bitmask to select compression bits
def INST(RA RB RT){
Example RT = COMPRESSM(RA, RB)
}
Return The compressed version of RA via the bitmask RB

StoneCutter Language Spec v.0.4
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3.2.5 CTZ

Table 11: CTZ Intrinsic

Mnemonic | RT = CTZ (RA)

Description | Counts the trailing zeros (little endian)

RA: Contains the value to count the trailing zeros
Arguments

def INST(RA RB RT){
Example RT = CTZ(RA)

Return The number of trailing zeros in the input value

StoneCutter Language Spec v.0.4
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3.2.6 DOZ
Table 12: DOZ Intrinsic
Mnemonic | RT = DOZ (RA, RB)
. . Performs " first grade subtraction.” Returns (RA — RB) IFF RA >= RB.
Description .
Returns 0 otherwise
Areuments RA: Contains the left hand input value
gt RB: Contains the right hand input value
def INST(RA RB RT){
Example RT = DOZ(RA, RB)
}
Return If( RA>= RB ) { return RA — RB }else{ return 0 }

StoneCutter Language Spec v.0.4
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3.2.7 EXTRACTS

Table 13: EXTRACTS Intrinsic

Mnemonic | EXTRACTS (RA, RB, RC)
Description | Extract the target field starting a bit position RC from RB, store into RA and sign extend.
RA: Contains the target output value
Arguments | RB: Input value to extract from
RC: Starting bit position
def INST(RA RB RC RT){
Example EXTRACTS(RA, RB, RC)
}
Return Nothing is returned
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3.2.8 EXTRACTZ

Table 14: EXTRACTZ Intrinsic

Mnemonic | EXTRACTZ (RA, RB, RC)
Description | Extract the target field starting a bit position RC from RB, store into RA and zero extend.
RA: Contains the target input value
Arguments | RB: Input value to extract from
RC: Starting bit position
def INST(RA RB RC RT){
Example EXTRACTZ(RA, RB, RC)
}
Return Nothing is returned
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3.2.9 INSERTS

Table 15: INSERTS Intrinsic

Mnemonic INSERTS (RA,RB, RC)
Description | Insert the field (RB) into RA starting at bit position RC and sign extend
RA: Contains the target input value
Arguments | RB: Input value to insert
RC: Starting bit position
def INST(RA RB RC RT){
Example | INSERTS(RA, RB, RC)
}
Return Nothing is returned
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3.2.10 INSERTZ

Table 16: INSERTZ Intrinsic

Mnemonic INSERTZ (RA, RB, RC)
Description | Insert the field (RB) into RA starting at bit position RC and zero extend
RA: Contains the target input value
Arguments | RB: Input value to insert
RC: Starting a bit position
def INST(RA RB RC RT){
Example INSERTZ(RA, RB, RC)
}
Return Nothing is returned
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3.2.11 MAJ
Table 17: MAJ Intrinsic
Mnemonic | RT = MAJ(RA, RB, RC)
Description Performs a majority vote of the values RA,RB and RC.
p Returns true if at least two inputs are true; returns false otherwise
RA: Input 1
Arguments | RB: Input 2
RC: Input3
def INST(RA RB RC RT){
Example RT = MAJ(RA, RB, RC)
}
Return Returns true if at least two inputs are true; returns false otherwise

StoneCutter Language Spec v.0.4

34



StoneCutter Language Spec v.0.4

3.2.12 MAX

Table 18: MAX Intrinsic

Mnemonic | RT = MAX (RA, RB)
Description | Returns the maximum value of RA and RB
RA: Input 1
Arguments RB: Input 2
def INST(RA RB RT){
Example RT = MAX(RA, RB)
}
Return If( RA > RB ){ return RA }else{ return RB}
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3.2.13 MERGE

Table 19: MERGE Intrinsic

Mnemonic | RT = MERGE (RA, RB, RC)
Description | Selectively merge bits specified by the mask in RC from RB into RA
RA: Contains the value to merge in non-masked bits
Arguments | RB: Contains the value to merge in masked bits
RC: Contains bitwise mask input
def INST(RA RB RC RT){
Example RT = MERGE(RA, RB, RC)
}
Return RT = RAA((RAARB)&RC)
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3.2.14 MIN

Table 20: MIN Intrinsic

Mnemonic | RT = MIN(RA, RB)
Description | Returns the minimum value of RA and RB
RA: Inputl
Arguments RB: Input2
def INST(RA RB RT){
Example RT = MIN(RA, RB)
}
Return If( RA < RB ){ return RA }else{ return RB}
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3.2.15 NOT
Table 21: NOT Intrinsic
Mnemonic | RT = NOT (RA)
Returns the bitwise complement of the input value. If the input value is
Description | a single bit boolean (ul), the logical complement is returned. If
the input value is larger than a single bit, the bitwise complement is returned
Arguments | RA: Contains the input to be complemented
def INST(RA RB RT){
Example | RT = NOT(RA)
}
Return Bitwise complement of RA
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3.2.16 POPCOUNT

Table 22: POPCOUNT Intrinsic

Mnemonic | RT = POPCOUNT (RA)
Description | Returns the population count of the input variable.
Arguments | RA: Contains the input value for the popcount
def INST(RA RB RT){
Example RT = POPCOUNT(RA)
}
Return The number of positive (1) bits in the input value is returned. The output storage must

contain sufficient space to storage the maximum popcount value (all positive bits)

StoneCutter Language Spec v.0.4 39



StoneCutter Language Spec v.0.4

3.2.17 REVERSE

Table 23: REVERSE Intrinsic

Mnemonic

RT = REVERSE (RA)

Description

Reverse the bit pattern of the input variable

Arguments

RA: Contains the input to be reversed

Example

def INST(RA RB RT){
RT = REVERSE(RA)

}

Return

The reversed bit pattern of the input variable
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3.2.18 ROTL

Table 24: ROTL Intrinsic

Mnemonic | RT = ROTL (RA, RB)
Description | Rotate the value in RA by RB bits to the left.
Arguments RA: Contains the value to be rotated
RB: Contains the number of bits to rotate by
def INST(RA RB RT){
Example | RT = ROTL(RA, RB)
}
Return The input value is rotated left by RB bits
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3.2.19 ROTR

Table 25: ROTR Intrinsic

Mnemonic | RT = ROTR(RA, RB)

Description | Rotate the value in RA by RB bits to the right.

Arguments RA: Contains the value to be rotated
RB: Contains the number of bits to rotate by
def INST(RA RB RT){

Example | RT = ROTR(RA, RB)
}
Return The input value is rotated right by RB bits
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3.2.20 SEXT

Table 26: SEXT Intrinsic

Mnemonic

Rt = SEXT (RA, IMM)

Description

Sign extend the input value RA from the sign bit at IMM

Arguments

RA: Contains the input value to sign extend

Example

def INST(RA RB RT){
RT = SEXT(RA.38)
}

Return

The sign extended version of the input
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3.2.21 ZEXT
Table 27: ZEXT Intrinsic
Mnemonic | ZEXT (RA, IMM)
Description | Zero extend the input value RA where IMM is the most significant bit
Arguments | RA: Contains the input value to zero extend
def INST(RA RB RT){
Example RT = ZEXT(RA,8)
}
Return The zero extended version of the input
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3.3 Memory Intrinsics

3.3.1 LOAD
Table 28: LOAD Intrinsic
Mnemonic | RT = LOAD (RA)
Description | Load the value at the address in RA. Attempt to derive the datatype
Arguments | RA: Contains the target address
def INST(RA RB RT){
Example RT = LOAD(RA)
}
Return The data from the load operation
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3.3.2 STORE

Table 29: STORE Intrinsic

Mnemonic | STORE (RA, RB)
Description | foo
Arguments RA: Contains the data to be stored
RB: Contains the target address
def INST(RA RB RT){
Example | STORE(RA, RB)
Return Nothing is returned

StoneCutter Language Spec v.0.4

46



StoneCutter Language Spec v.0.4

3.3.3 LOADELEM

Table 30: LOADELEM Intrinsic

Mnemonic | RT = LOADELEM (RA, RB)
Description | Load the value at the address in RA. The element size is contained in RB.
Arguments RA: Contains the target address
RB: Contains the size of the element
def INST(RA RB RT){
Example RT = LOADELEM(RA, RB)
}
Return The data from the load operation
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3.3.4 STOREELEM

Table 31: STOREELEM Intrinsic

Mnemonic | STOREELEM (RA, RB, RC)
Description | Stores the data in RA to the address at RB. The element size is contained in RC.
RA: Contains the data to be stored
Arguments | RB: Contains the target address
RC: Contains the size of the element
def INST(RA RB RC RT){
Example STOREELEM(RA, RB, RC)
}
Return Nothing is returned
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3.3.5 FENCE

Table 32: FENCE Intrinsic

Mnemonic | FENCE ()
Description | Forces a memory fence operation.
Arguments | None
def INST(RA RB RC RT){
Example FENCE()
}
Return Nothing is returned
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4 Appendix A: Sample StoneCutter Implementation

#-— StoneCutter source file for ISA=BasicRISC.ISA

# Instruction Formats
instformat Arith.if (reg[GPR] ra,reg[GPR] rb,reg[GPR] rt,enc opc,
enc func, imm imm)
instformat ReadCtrl.if (reg[GPR] ra,reg[CTRL] rb,reg[GPR] rt,
enc opc,enc func,imm imm)
instformat WriteCtrl.if (reg[GPR] ra,reg[GPR] rb,reg[CTRL] rt,
enc opc,enc func,imm imm)

# Register Class Definitions

regclass GPR( u64 r0O, u64 rl, u64 r2, uo64 r3, u6d r4, u6d r5,
uoc4 r6, u64 r7, ued r8, uod r9, uocd rl1l0, uo6d rilil,
u64 rl2, u64d4 rl3, uo6d rl4, u6d rl5, u6d rle, uod rl7,
u64 rl18, u6d rl9, ued r20, u6d r21, u6d r22, uo6d r23,
u64 r24, u64d r25, ued r26, u6d r27, u6d r28, uocd r29,
u64 r30, ucd r3l1 )

regclass CTRL( u64 pc[PC], u6b4 exc, u64 ne, u64 eq, ub64 gt, u6bd 1t,
u64 gte, u64 lte, u64d sp, u64d fp, u6d rp )

# Instruction Definitions
# add
def add:Arith.if( ra rb rt imm )
{
rt = ra + rb

}

# sub
def sub:Arith.if( ra rb rt imm )
{

rt = ra - rb

}

# mul
def mul:Arith.if( ra rb rt imm )

{

rt = ra * rb

# div
def div:Arith.if( ra rb rt imm )

{
rt = ra / rb

# divu
def divu:Arith.if( ra rb rt imm )

{
rt = ra / rb
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rb rt imm )

rb rt imm )

rb rt imm )

rb rt imm )

rb rt imm )

# sl1
def sll:Arith.if( ra
{
rt = ra << rb
}
# srl
def srl:Arith.if( ra
{
rt = ra >> rb
}
# sra
def sra:Arith.if( ra
{
rt = ra >> rb
}
# and
def and:Arith.if( ra
{
rt = ra & rb
}
# or
def or:Arith.if( ra rb rt imm )
{
rt = ra | rb
}
# nand
def nand:Arith.if( ra rb rt imm )
{
rt = NOT (ra & rb)
}
# nor
def nor:Arith.if( ra
{
rt = NOT (ra | rb)
}
# xor
def xor:Arith.if( ra

{
rt = ra ~ rb

}

# cmp.ne
def cmp.ne:Arith.if(
{
if( ra != rb ){
rt = 2
lelse(

rb rt imm )

ra rb rt imm )
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Il
o

rt
}

# cmp.eq
def cmp.eqg:Arith.if(
{
if( ra == rb ) {
rt = 3
}else(
rt =0
}
}

# cmp.gt
def cmp.gt:Arith.if(
{
if( ra > rb ){
rt = 4
}else(
rt = 0
}
}

# cmp.lt
def cmp.lt:Arith.if(
{
if( ra < rb ){
rt = 5
}else(
rt = 0
}
}

# cmp.gte
def cmp.gte:Arith.if(
{
if( ra >= rb ) {
rt = 6
}else(
rt = 0
}
}

# cop.lte
def cmp.lte:Arith.if(
{

if( ra <= rb ) {

rt = 7
lelse(
rt = 0

}

ra rb rt imm )

ra rb rt imm )

ra rb rt imm )

ra rb rt imm )

ra rb rt imm )

StoneCutter Language Spec v.0.4

92




160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

StoneCutter Language Spec v.0.4

# 1b
def lb:Arith.if( ra rb rt imm )

rt = SEXT (LOADELEM (ra+imm, 8),7)

# 1lh
def lh:Arith.if( ra rb rt imm )

rt = SEXT(LOADELEM (ra+imm,16),15)

# 1w
def lw:Arith.if( ra rb rt imm )

rt = SEXT (LOADELEM (ra+imm, 32),31)

# 1d
def 1ld:Arith.if( ra rb rt imm )
{
rt = LOADELEM (ra+imm, 64)
}

# sb
def sb:Arith.if( ra rb rt imm )
{
STOREELEM (ra, rt+imm, 8)
}

# sh
def sh:Arith.if( ra rb rt imm )

{
STOREELEM (SEXT (ra, 15), rt+imm, 16)

}

# sw
def sw:Arith.if( ra rb rt imm )

{
STOREELEM (SEXT (ra, 31) , rt+imm, 32)

}

# sd
def sd:Arith.if( ra rb rt imm )

{
STOREELEM (ra, rt+imm, 64)

}

# lbu
def lbu:Arith.if( ra rb rt imm )

{
rt = ZEXT (LOADELEM (ra+imm, 8),7)

}
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# lhu
def lhu:Arith.if( ra rb rt imm )
{
rt = ZEXT (LOADELEM (ra+imm, 16),15)
}

# lwu
def lwu:Arith.if( ra rb rt imm )
{
rt = ZEXT (LOADELEM (ra+imm, 32),31)
}

# sbu
def sbu:Arith.if( ra rb rt imm )
{

STOREELEM (ZEXT (ra, 7) , rt+imm, 8)
}

# shu
def shu:Arith.if( ra rb rt imm )
{
STOREELEM (ZEXT (ra, 15) , rt+imm, 16)
}

# swu
def swu:Arith.if( ra rb rt imm )
{
STOREELEM (ZEXT (ra, 31) , rt+imm, 32)
}

# not

def not:Arith.if( ra rb rt imm )

{
rt = NOT (ra)

}

# bra

def bra:Arith.if( ra rb rt imm )

{
pc = rt

}

# br
def br:Arith.if( ra rb rt imm )
{
pc = pc + rt
}

# cadd
def cadd:ReadCtrl.if( ra rb rt imm )
{

rt = ra + rb

}
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# brac
def brac:ReadCtrl.if(
{
if( ra == rb ) {
pc = rt
lelse(
pc = pc + 4
}
}

# brc

ra rb rt imm )

def brc:ReadCtrl.if( ra rb rt imm )

{
if( ra == rb ) {
pc = pc + rt
lelse(
pc = pc + 4
}
}

# ladd

def ladd:WriteCtrl.if (

{
rt = ra + rb

}

# brr
def brr:WriteCtrl.if(
{
pc = rt
}

ra rb rt imm )

ra rb rt imm )

Listing 21: Sample StoneCutter
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5 Appendix B: Intrinsic Function Table

Table 33: StoneCutter Intrinsics

Intrinsic Outputs | Inputs | Description
BSEL 1 3 Bit field selection
CLZ 1 1 Count leading zero
COMPRESS 1 1 Bit compress
COMPRESSM 1 2 Bit compress under mask
CTZ 1 1 Count trailing zero
DOZ 1 2 First grade subtraction
EXTRACTS 0 3 Bit extract and sign extend
EXTRACTZ 0 3 Bit extract and zero extend
INSERTS 0 3 Bit insert and sign extend
INSERTZ 0 3 Bit insert and zero extend
MAJ 1 3 Majority vote
MAX 1 2 Max
MERGE 1 3 Merge under mask
MIN 1 2 Min
NOT 1 1 Bit complement
POPCOUNT 1 1 Population count
REVERSE 1 1 Bit reverse
ROTL 1 2 Rotate left
ROTR 1 2 Rotate right
SEXT 1 2 Sign extend
ZEXT 1 2 Zero extend
LOAD 1 1 Memory load
STORE 0 2 Memory store
LOADELEM 1 2 Memory element load
STOREELEM 0 3 Memory element store
FENCE 0 0 Memory fence
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